Федеральное государственное бюджетное образовательное учреждение высшего образования «Северо-Осетинская государственная медицинская академия» Министерства здравоохранения Российской Федерации

Кафедра биологической химии

УТВЕРЖДЕНО

протоколом заседания Центрального координационного учебно-методического совета от « $\underline{22}$ » $\underline{\text{марта}}$ $\underline{2022}$ г. $\underline{\text{No}}$ $\underline{4}$

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Клиническая биохимия»

основной профессиональной образовательной программы высшего образования – программы ординатуры по специальности 31.08.75 Стоматология ортопедическая, утвержденной 30.03.2022 г (ОРД-СТОМ.ОРТ-19-03-22)

Форма обучения: очная_	
Срок освоения ОПОП ВО:	2 года

Рассмотрено и одобрено на заседании кафедры от 27 августа 2020 г. (протокол №1)

Заведующий кафедрой, доцент, к.м.н

А.Е.Гурина

г. Владикавказ 2022 г.

СТРУКТУРА ФОС

- 1. Титульный лист
- 2. Структура ФОС
- 3. Рецензия на ФОС
- 4.Паспорт оценочных средств
- 5. Комплект оценочных средств:
- ЭТАЛОНЫ ТЕСТОВЫХ ЗАДАНИЙ (с титульным листом и оглавлением),
- вопросы для собеседования
- ситуационные задачи с эталонами ответов

Паспорт фонда оценочных средств по дисциплине «Клиническая биохимия»

для специальности 31.08.75 Стоматология ортопедическая

(название дисциплины, учебной/производственной практики- выбрать необходимое)

No	Наименование	Код формируемой	Наименование	
п/п	контролируемого раздела	компетенции	оценочного	
	(темы) дисциплины/модуля	(этапа)	средства	
1	2	3	4	
Вид	Текущиї	і, промежуточный		
контроля				
1.	Биохимические анализы в	УК-1	Тестовый	
	клинической медицине.	ПК-5	контроль	
	Методы клинической		Вопросы для	
	биохимии.		собеседования	
2.	Клиническая биохимия при	УК-1	Тестовый	
	расстройствах гемостаза	ПК-5	контроль	
			Вопросы для	
			собеседования	
3.	Биохимические маркеры	УК-1	Тестовый	
	костного метаболизма -	ПК-5	контроль	
	щелочная фосфатаза,		Вопросы для	
	ионизированный кальций и		собеседования	
	фосфаты.			
4.	Биологические жидкости	УК-1	Тестовый	
	ротовой полости (смешанная	ПК-5	контроль	
	слюна, десневая жидкость)		Вопросы для	
	,		собеседования	

^{*}Наименование контролируемого раздела (темы) или тем (разделов) дисциплины/ производственной практики берется из рабочей программы.

Вопросы для текущего контроля знаний

I. Биохимические анализы в клинической медицине. Методы клинической биохимии.

- 1) Место клинической биохимии среди других прикладных клинических дисциплин
- 2) Применение биохимических анализов (скрининг, мониторинг, диагноз, прогноз)
 - 3) Отбор образцов для анализов (запрос на анализ)
- 4) Понятие о биохимических стандартах и контроле качества биохимического материала
- 5) Лабораторные методы оценки белкового обмена (азотометрические, гравиметрические, «преципитационные», спектрофотометрические, рефрактометрические, колориметрические)
 - 6) Лабораторные методы оценки ферментативного обмена
 - 7) Лабораторные методы оценки пигментного обмена
 - 8) Лабораторные методы оценки углеводного обмена

- 9) Методы определения показателей липидного обмена
- 10) Лабораторные методы оценки кислотно-основного состояния

II. Клиническая биохимия при расстройствах гемостаза.

- 1) Функции системы гемостаза в организме
- 2) Виды гемостаза
- 3) Составляющие элементы первичного гемостаза
- 4) Роль тромбоцитов в гемостазе
- 5) Характеристика коагуляционного гемостаза. Плазменные факторы коагуляции
- 6) Основные компоненты фибринолитической системы
- 7) Методы исследования сосудисто-тромбоцитарного гемостаза
- 8) Методы исследования коагуляционногогемостаза. Методы оценки коагуляционного гемостаза
- 9) Понятие о протромбиновом времени. Способы выражения ПТВ
- 10) Методы определения фибриногена

III. Биохимические маркеры метаболизма костной ткани - щелочная фосфатаза, ионизированный кальций и фосфаты.

- 1) Образование костной ткани
- 2) Функции костной ткани
- 3) Механизмы разрушения костной ткани
- 4) Состояние межклеточного матрикса
- 5) Характеристика биохимических маркеров костного метаболизма
- 6) Значение кальция, витамина D и паратгормона в функционировании костной ткани; мишени и механизмы действия кальция.

IV. Биологические жидкости ротовой полости (смешанная слюна, десневая жидкость).

- 1. Основные ткани ротовой полости
- 2. Охарактеризуйте состав и функции эмали; особенности метаболизма в зубной эмали.
 - 3. Особенности метаболизма в дентине.
 - 4. Состав и функции цемента; особенности метаболизма в цементе.
- 5. Дайте определение терминам: собственно слюна, ротовая жидкость (смешанная слюна), зубной ликвор.
- 6. Какие функции выполняет ротовая жидкость? Физико-химические свойства ротовой жидкости.
 - 7. Регуляция слюнной секреции.
- 8. Биологическая роль в поддержании гомеостаза основных неорганических веществ, присутствующих в ротовой жидкости.
- 9. Основные органические компоненты ротовой жидкости (гликопротеины, белки, ферменты и их роль).
- 10. Принципы использования ротовой жидкости для диагностики соматических заболеваний («саливодиагностика» и её преимущества перед обычными методами исследования).

Вопросы для проведения зачета по дисциплине «Клиническая биохимия»:

- 1. Что изучает клиническая биохимия и какова ее роль в ряду других клинических дисциплин?
 - 2. Цели и задачи клинической биохимии.
 - 3. Методы клинической биохимии.
 - 4. Какова связь лабораторной диагностики и клинической биохимии?
- 5. Как осуществляется подготовка пациента к взятию биологического материала для лабораторного исследования?
 - 6.Сущность лабораторного теста.
- 7. Принципы организации контроля качества лабораторных исследований в клинической биохимии
 - 8. Технология оценки результатов лабораторных исследований
 - 7. Способы применения лабораторных тестов.
 - 8. Клиническая эффективность биохимического анализа.
 - 9. Показатели гемостаза в норме и при патологии.
 - 10. Группы белков плазмы крови; методы определения.
 - 11. Показатели водно-солевого обмена в норме и при патологии.
- 12. Клиническое значение определения параметров кислотно-щелочного равновесия.
 - 13. Роль ферментов в диагностике заболеваний.
- 14. Патобиохимия азотистого обмена (метаболические нарушения цикла мочевины, фенилкетонурия, патобиохимия пуринового обмена; роль ферментов обмена пуриновых нуклеотидов в функционировании Т- и В-лимфоцитов и в патогенезе иммуннодефицитов).
 - 15. Эндокринология и иммунология.
 - 16. Алгоритм лабораторной диагностики при комах различной этиологии.
- 17. Биохимические основы патологии обмена углеводов (нарушение переваривания дисахаридов, нарушения обмена фруктозы, галактозы; гликогеновые болезни).
- 18. Биохимия сахарного диабета (инсулин и глюкагон как регуляторы депонирования и мобилизации гликогена и жиров; синтез и секреция инсулина; нарушение синтеза гликогена и жиров при дефиците инсулина; коматозные состояния при диабете острые осложнения как результат нарушения обмена глюкозы и жиров; гликирование белков как одна из главных причин поздних осложнений сахарного диабета; диагностика и лечение сахарного диабета).
- 20. Оксид азота как регулятор клеточных функций (биосинтез оксида азота, биосинтез оксида азота, молекулярные основы действия оксида азота; молекулярные мишени для оксида азота и пути проведения сигнала; включение оксида азота в физиологические и патологические процессы органов и систем).
 - 21. Основные ткани ротовой полости
- 22. Дайте определение терминам: собственно слюна, ротовая жидкость (смешанная слюна), зубной ликвор.
- 23. Какие функции выполняет ротовая жидкость? Физико-химические свойства ротовой жидкости.
 - 24. Регуляция слюнной секреции.
- 25. Биологическая роль в поддержании гомеостаза основных неорганических веществ, присутствующих в ротовой жидкости.

- 26. Основные органические компоненты ротовой жидкости (гликопротеины, белки, ферменты и их роль).
- 27. Принципы использования ротовой жидкости для диагностики соматических заболеваний («саливодиагностика» и её преимущества перед обычными методами исследования).
- 28. Какие ферменты принимают участие в процессах минерализации и деминерализации эмали.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВЕРО-ОСЕТИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЕЦЕНЗИЯ на фонд оценочных средств

по _	Клиническая биохимии					
	(название дисциплины/учебной/производственной практики- выбрать необходимое)					
ДЛЯ	ляординаторов_1 года обучения					
_	(студенты/ординаторы/слушатели – выбрать необходимое) (курс/год обучения ординаторов)					
	21.00.75.0					
по специальности31.08.75 Стоматология ортопедическая						
	(код/название)					

Фонд оценочных средств составлен на кафедре биологической химии на основании рабочей программы дисциплины «Клиническая биохимия» и соответствуют требованиям ФГОС ВО по специальности 31.08.75 Стоматология ортопедическая.

Фонд оценочных средств утвержден на заседании Центрального координационного учебно-методического совета и скреплен печатью учебно-методического управления. Фонд оценочных средств включает в себя банк тестовых заданий, ситуационные задачи, вопросы для проведения текущего контроля знаний и вопросы для проведения итогового зачета по дисциплине. Банк тестовых заданий включает в себя тестовые задания и шаблоны ответов. Все задания соответствуют рабочей программе дисциплины клиническая биохимия и охватывают все её разделы. Количество тестовых заданий составляет 20. Количество заданий по каждому разделу дисциплины достаточно для проведения текущего контроля знаний и исключает многократное повторение одного и того же вопроса в различных вариантах. Количество ситуационных задач составляет 20. Банк содержит ответы ко всем тестовым заданиям и задачам.

Количество вопросов для проведения зачета по дисциплине «Клиническая биохимия» составляет 28, что достаточно для проведения итогового зачета. Содержание вопросов относится к различным разделам программы, позволяющее более полно охватить материал учебной дисциплины.

Замечаний к рецензируемому фонду оценочных средств нет.

В целом, фонд оценочных средств по дисциплине «Клиническая биохимия» способствует качественной оценке уровня владения обучающимися универсальными и профессиональными компетенциями.

Рецензируемый фонд оценочных средств по дисциплине «Клиническая биохимия» может быть рекомендован к использованию для промежуточной аттестации для ординаторов 1 года обучения по специальности 31.08.75 Стоматология ортопедическая.

Рецензент:

Председатель ЦУМК естественнонаучных и математических дисциплин с подкомиссией по эксиертизе оценочных средств, доцент

ВЕРНО: мачальник отдела кадров и логументооборога ФГБОУ 80 СОГМА Минадрава у ссии

к.м.н

Федеральное государственное бюджетное образовательное учреждение высшего образования «Северо-Осетинская государственная медицинская академия» Министерства здравоохранения Российской Федерации

Кафедра биологической химии

УТВЕРЖДЕНО

протоколом заседания Центрального координационного учебно-методического совета от « $\underline{22}$ » марта $\underline{2022}$ г. № $\underline{4}$

Эталоны тестовых заданий по дисциплине «Клиническая биохимия»

основной профессиональной образовательной программы высшего образования – программы ординатуры по специальности 31.08.75 Стоматология ортопедическая, утвержденной 30.03.2022 г (ОРД-СТОМ.ОРТ-19-03-22)

Форма обучения: <u>очная</u> Срок освоения ОПОП ВО: <u>2 года</u>	
Рассмотрено и одобрено на заседании кафедры от <u>27 августа</u> 20 <u>20</u> г. (протокол № <u>1</u>)	
Заведующий кафедрой, доцент,	А.Е.Гурина

г. Владикавказ 2022 г.

Оглавление

Nº	Наименование контролируемого раздела дисциплины/практики	Количество тестов (всего)	Код формируемых компетенций	стр. с по
1	2	3	4	5
Вид		Текущий, пром	ежуточный	
контроля		,	<u>, </u>	
1.	Биохимические	20	УК-1	
	анализы в клинической		ПК-5	9-11
	медицине. Методы			
	клинической биохимии.			
2.	Клиническая биохимия	20	УК-1	
	при расстройствах		ПК-5	12-15
	гемостаза			
3.	Биохимические	20	УК-1	
	маркеры костного		ПК-5	15-17
	метаболизма -			
	щелочная фосфатаза,			
	ионизированный			
	кальций и фосфаты.			
4.	Биологические	20	УК-1	
	жидкости ротовой		ПК-5	18-20
	полости (смешанная			
	слюна, десневая			
	жидкость)			
Ситуационные задачи		20	УК-1	21-27
J 4-2-3	77.37	_	ПК-5	-

- Наименование контролируемого раздела или тем дисциплины/учебной/производственной практики берется из рабочей программы.
- Выписка из протокола заседания кафедры об алгоритме формирования теста для каждого вида тестирования (1 раз в год).
- Выписка из протокола заседания кафедры с записями об актуализации (внесение изменений, аннулирование, включение новых оценочных средств)(1 раз в год).
- Выписка из протокола заседания Цикловой учебно-методической комиссии об утверждении оценочных средств (по мере необходимости).

ТЕСТОВЫЕ ЗАДАНИЯ

TEMA 1. Биохимические анализы в клинической медицине. Методы клинической биохимии.

1. Биохимические анализаторы позволяют:

- 6. повысить производительность работы в лаборатории
- 7. проводить исследования кинетическими методами
- 8. расширить диапазон исследований
- 9. выполнять сложные виды анализов
- 10. все перечисленное

2. К методам срочной лабораторной диагностики следует отнести определение:

- 1) активности кислой фосфатазы
- 2) белковых фракций
- 3) опухолевых маркеров
- 4) общего холестерина
- 5) билирубина у новорожденных

3. Содержание креатинина в крови увеличивается при:

- 1) хронической почечной недостаточности
- 2) гепатите
- 3) гастрите
- 4) язвенном колите
- 5) всех перечисленных состояниях

4. Определение клиренса эндогенного креатинина применимо для:

- 1) оценки секреторной функции канальцев почек
- 2) определения концентрирующей функции почек
- 3) оценки количества функционирующих нефронов
- 4) определения величины почечной фильтрации
- 2) ни для одной из перечисленных задач

5. Мочевая кислота повышается в сыворотке при:

- 1) гастрите, язвенной болезни
- 2) гепатитах
- 3) лечениицитостатиками
- 4) эпилепсии, шизофрении
- 5) всех перечисленных заболеваниях

6. Основная физиологическая роль гаптоглобина:

- 1) связывание гемоглобина
- 2) антипротеолитическая активность
- 3) участие в реакции иммунитета
- 4) участие в свертывании крови
- 5) все перечисленное верно

7. Гипогаммаглобулинемия наблюдается при:

- 1) лимфосаркоме
- 2) миеломной
- 3) облучении
- 4) длительных хронических заболеваниях
- 5) при всех перечисленных состояниях

8. Наиболее выраженное повышение С-реактивного белка наблюдается при:

- 1) вирусных инфекциях
- 2) склеродермии
- 3) бактериальных инфекциях
- 4) лейкемии
- 5) все перечисленное верно

9. Гипоальбуминемия наблюдается при:

- 1) циррозе печени
- 2) кровотечении
- 3) гипертиреоидозе
- 4) нефротическом синдроме
- 5) все перечисленное верно

10. Альфа-1 - антитрипсин– это:

- 1) белок острой фазы
- 2) ингибитор сериновыхпротеиназ
- 3) ингибитор лейкоцитарной эластазы
- 4) все перечисленное верно
- 5) все перечисленное неверно

11. Мутность сыворотки обусловлена избытком:

- 1) холестерина
- 2) фосфолипидов
- 3) триглицеридов
- 4) жирных кислот
- 5) простагландинов

12. Для типирования гиперлипопротеидемии достаточно исследовать в сыворотке крови:

- 1) альфа-холестерин
- 2) общий холестерин
- 3) спектр липопротеидов
- 4) липопротеиды низкой плотности
- 5) триглицериды

13. Аполипопротеином является белок, который:

- 1. формирует белок-липидный комплекс
- 2. определяет функциональные свойства белок-липидного комплекса
- 3. определяет направленный перенос липидных комплексов в системе циркуляции
- 4. в сыворотке входит в состав липопротеидов
- 5. все перечисленное верно

14. Под кислотами понимают:

- 1. <u>Соединения</u>, способные отдавать ионы водорода в растворе
- 2. Соединения, способные при
- диссоциации присоединять ионы
- водорода
- 3. Соединения, диссоциирующие в крови с образованием
- гидроксильной группы
- 4. Соединения, способные присоединять гидроксильные группы

15. Между pCO_2 и концентрацией ионов водорода в крови сущетсвует следующая зависимость:

- 1. Зависимость отсутствует
- 2. Прямо пропорциональная зависимость
- 3. Обратно пропорциональная зависимость
- 4. Логарифмическая зависимость

16. Что отражает показатель рН?

- 1. Концентрацию свободных ионов водорода
- 2. Концентрацию гидроксильных групп
- 3. Отношение концентрации Н к концентрации ОН групп
- 4. Напряжение ионов водорода

17. Источниками ионов водорода в организме могут являться:

- 1. Реакции переаминирования
- 2. Реакции окислительного дезаминирования
- 3. Диссоциации угольной кислоты
- 4. Синез глютамина

18. Бикарбонатный буфер поддерживает кислотно-основное равновесие путем:

- 1. Замены сильных кислот слабыми
- 2. Образование в оргпнизме органических кислот
- 3. Выработка ионов фосфора
- 4. Поддержание осмотического давления

19. С помощью каких параметров можно оценить эффективность действия буфера?

- 1. pH
- 2. анионного промежутка
- 3. диапазона буферного действия
- 4. концентрации ионов хлора в моче
- 5. буферной емкости

20. Какой из перечисленных буферов является основным внутриклеточым?

- 1. Бикарбонатный
- 2. Ацетатный
- 3. Белковый

- 4. Фосфатный
- 5. Гемоглобиновый

ТЕМА 2. Клиническая биохимия при расстройствах гемостаза.

1. Тромбоциты образуются в:

- 1) селезенке
- 2) костном мозге
- 3) лимфатических узлах
- 4) все ответы правильные
- 5) правильного ответа нет

2. Тромбоцитопения характерна для:

- 1) краснухи новорожденных
- 2) лучевой болезни
- 3) ДВС-синдрома
- 4) ВИЧ-инфекции
- 5) все перечисленное верно
- 3. Пойкилоцитоз это изменение:
- 1) формы эритроцитов
- 2) размера эритроцитов
- 3) интенсивности окраски эритроцитов
- 4) объема эритроцитов
- 5) всех перечисленных параметров

4. Подсчет эритроцитов рекомендуется проводить сразу после взятия крови при:

- 1) железодефицитных анемиях
- 2) гемолитических анемиях
- 3) апластическиханемиях
- 4) В₁₂- дефицитных анемиях
- 5) всех перечисленных анемиях

5. Основным энергетическим субстратом в эритроцитах является:

- 1. глюкоза
- 2. фруктоза (балл 0)
- 3. липиды (балл 0)
- 4. глютатион (балл 0)
- гликоген (балл 0)

6. Для подсчета тромбоцитов может быть использован любой из перечисленных методов, кроме:

- 1) в камере с применением фазово-контрастного устройства
- 2) в мазках крови
- 3) в камере Горяева
- 4) на гематологическом анализаторе
- 5) тромбоэластограммы

7. Основную массу тромбоцитов периферической крови здоровых людей составляют:

- 1) юные
- 2) зрелые
- 3) старые
- 4) формы раздражения
- 5) регенеративные

8. Снижение количества тромбоцитов в периферической крови происходит в результате:

- 1) редукции мегакариоцитарного аппарата костного мозга, нарушения отшнуровки тромбоцитов от мегакариоцитов
- 2) снижения продолжительности жизни тромбоцитов
- 3) повышенного потребления тромбоцитов
- 4) разрушения тромбоцитов антитромбоцитарными антителами
- 5) всех перечисленных причин

9. Реактивный тромбоцитоз возможен при:

- 1) кровотечении
- 2) оперативном вмешательстве
- 3) малых дозах ионизирующей радиации
- 4) злокачественных новообразованиях
- 5) всех перечисленных состояниях

10. Повышение количества тромбоцитов наблюдается при любом из перечисленных заболеваний, кроме:

- 1) начального периода хронического миелолейкоза
- 2) миелофиброза
- 3) эритремии
- 4) B_{12} -дефицитной анемии
- 5) всех перечисленных состояниях

11. Выраженная тромбоцитопения наблюдается при:

- 1) лучевой болезни
- 2) дефиците витамина B_{12} и фолиевой кислоты
- 3) апластическиханемиях
- 4) остром лейкозе
- 5) всех перечисленных заболеваниях

12. В процессах гемостаза тромбоциты выполняют функцию:

- 1) ангиотрофическую
- 2) адгезивную
- 3) коагуляционную
- 4) агрегационную
- 5) все перечисленные функции

13. Подсчитано 80 тромбоцитов на 1000 эритроцитов, количество эритроцитов в крови равно 4,0x1012/л, число тромбоцитов в крови составляет:

- 1) 240x109/л
- 2) 280x109/л
- 3) $300x109/\pi$
- 4) 320x109/л
- 5) 340x109/л

14. Тромбоциты образуются из:

- 1) плазмобласта
- 2) миелобласта
- 3) мегакариобласта
- 4) фибробласта
- 5) лимфобласта

15. Тромбоцитопатии не сопровождаются:

- 1) удлинением времени кровотечения
- 2) удлинением времени свертывания
- 3) нарушением образования протромбиназы
- 4) К-авитаминозом
- 5) ни одним из перечисленных эффектов

16. Тромбоцитопенией сопровождаются все перечисленные заболевания, кроме:

- 1) гиперспленизма
- 2) ДВС-синдрома
- 3) гемофилии
- 4) синдрома Казабаха-Меритта
- 5) ни одного из перечисленных

17. Фибринообразование следует контролировать:

- 1) Фибриногеном
- 2) Протромбиновым временем
- 3) Активированным частичным тромбопластиновым временем (АЧТВ)
- 4) Антитромбином III
- 5) Определением протеина С.

18. Антикоагулянтв непрямого действия можно контролировать:

- 1. Временем свертывания
- 2. Тромбиновым временем
- 3. Протромбиновым временем (МНО)
- 4. Продуктами деградации фибрина
- 5. Антитромбином III

19. При гемофилии имеется дефицит факторов

- 1) Плазмы
- 2) Тромбоцитов

- 3) Лейкопитов
- 4) Эндотелия сосудов
- 5) Фибринолиза

20. Тромбинообразование следует контролировать:

- 1) Тромбиновым временем
- 2) Фактором XIII
- 3) Толерантностью плазмы к гепарину
- 4) Протромбиновым временем
- 5) Антитромбином III

TEMA 3. Биохимические маркеры костного метаболизма - щелочная фосфатаза, ионизированный кальций и фосфаты. Баланс кальция его регуляция витамином D и паратгормоном.

1. Что называется активным центром фермента?

- 1) участок фермента, обеспечивающий присоединение субстрата и его превращение;
- 2) место присоединения апофермента к коферменту;
- 3) часть молекулы фермента, которая легко отщепляется от апофермента;
- 4) место присоединения аллостерического эффектора.

2. Аминокислоты, входящие в активный центр фермента, располагаются:

- 1) в разных участках полипептидной цепи;
- 2) в середине полипептидной цепи;
- 3) на С-конце полипептидной цепи;
- 4) непрерывно друг за другом в одном участке полипептидной цепи.

3. Какие связи преимущественно образуются между ферментом и субстратом при формировании субстрат-энзимного комплекса?

- 1) водородные;
- 2) пептидные;
- 3) ионные;
- 4) дисульфидные.

4. Как называется вещество, с которым взаимодействует фермент?

- 1) апофермент;
- 2) кофермент;
- 3) изоэнзим;
- 4) <u>субстрат</u>;
- 5) холофермент.

5. С белковой частью фермента непрочно связан:

- 1) простетическая группа;
- 2) кофермент;
- 3) апофермент;
- 4) изофермент.

6. Какая часть фермента определяет специфичность его действия?

- 1) апофермент;
- 2) кофермент;
- 3) простетическая группа;
- 4) профермент.

7. Как называется участок фермента, обеспечивающий химическое превращение субстрата?

- 1) адсорбционный центр;
- 2) регуляторный центр;
- 3) каталитический центр.

8. Аллостерический центр — это участок фермента, к которому присоединяется:

- 1) квази-субстрат;
- 2) кофермент;
- 3) эффектор;
- 4) субстрат.

9. Сущность теории Фишера:

- 1) <u>активный</u> центр фермента и субстрат находятся в строгом пространственном соответствии;
- 2) активный центр пространственно формируется по субстрату в процессе образования субстрат-энзимного комплекса;
- 3) активный центр присоединяет группу родственных субстратов;
- 4) активный центр может взаимодействовать только с одним субстратом.

10. Сущность теории Кошланда:

- 1) активный центр фермента и субстрат находятся в строгом пространственном соответствии;
- 2) активный центр пространственно формируется по субстрату в процессе образования субстрат-энзимного комплекса;
- 3) активный центр присоединяет группу родственных субстратов;
- 4) активный центр может взаимодействовать только с одним субстратом.

11. Какова возможная причина активирующего действия на фермент ионов шелочно-земельных металлов?

- 1) способствуют образованию субстрат-энзимного комплекса;
- 2) усиливают диссоциацию субстрат-энзимного комплекса;
- 3) вызывают денатурацию апофермента;
- 4) изменяют конформацию субстрата.

12. Какие связи разрушаются под действием амилазы?

- 1) пептидные;
- 2) эфирные;
- 3) гликозидные;
- 4) водородные.

13. Ферменты, участвующие в разрыве –С-С-связей без участия воды, относятся к классу:

- 1) лиаз;
- 2) лигаз;
- 3) трансфераз;
- 4) гидролаз;
- 5) изомераз.

14. Какой фермент осуществляет гидролитический распад дисахарида?

- 1) липаза;
- 2) амилаза;
- 3) лактаза;
- 4) пептидаза.

15. К классу оксидоредуктаз относятся:

- 1) цитохромоксидаза;
- 2) глюкокиназа;
- 3) каталаза;
- 4) эндопептидаза.

16. Ионы Са²⁺ в клетке:

- 1) активируют цАМФ-зависимую протеинкиназу;
- 2) ингибируют синтез инсулина;
- 3) участвуют в активации ряда ферментов;
- 4) активируют обмен кальмодулина;
- 5) активируют протеинкиназу С.

17. Ионы кальция являются модулятором для кальмодулина, т.к.:

- 1) кальций связывается с кальмодулином;
- 2) кальмодулин активирует уборку ионов кальция;
- 3) комплекс Са²⁺-кальмодулин изменяет активность ряда ферментов;
- 4) комплекс Са²⁺-кальмодулин способствует синтезу цАМФ;
- 5) комплекс Ca²⁺-кальмодулин ингибирует фосфодиэстеразу.

18. Назовите гормоны, обладающие мембранным механизмом действия.

- 1) Производные арахидоновой кислоты
- 2) Производные стерана.
- 3) Производные сложных белков.
- 4) Тиреоидные гормоны.
- 5) Производные аминокислот.

19. Гормоны влияют на:

- 1) увеличение количества рецепторов.
- 2) конформацию липидов мембран.
- 3) концентрацию ферментов.
- 4) специфичность рецепторов.
- 5) транспортные системы мембран.

20. Роль гормонов передней доли гипофиза заключается в:

1) регуляции функций периферических эндокринных желез.

- 2) ингибировании секреции релизинг-факторов.
- 3) активации выработки статинов.

ТЕМА 4. Биологические жидкости ротовой полости (смешанная слюна, десневая жидкость).

1.Суточный объём слюны составляет:

- а) 1 л
- б) 0,5 -2 л
- в) 3 л
- г) 5 л

2. Минерализующая функция слюны обеспечивается:

- а) кальцием, связанным с белками
- б) кальцием, связанным с фосфатами
- в) ионизированным кальцием
- г) кальцием, связанным с цитратом

3. Самой прочной минерализованной тканью является:

- а) дентин зуба
- б) тела длинных костей
- в) эмаль зуба
- г) альвеолярный отросток

4. Содержание минеральных веществ в дентине составляет:

- a) 90%
- б) 70%
- в) 50%
- г) 30-40%

5. Слюнные железы вырабатывают белковый гормон:

- а) тиреокальцитонин
- б) паратгормон
- в) паротин-S
- г) соматостатин

6. Кальций-связывающий белок слюны:

- а) способствует образованию зубного камня
- б) увеличивает поступление кальция в эмаль
- в) участвует в образовании мицеллярных структур слюны
- г) поддерживает рН ротовой жидкости

7. В слюне содержится больше всего ферментов из класса:

- а) трансферазы
- б) гидролазы
- в) лиазы

г) изомеразы

8. Вторичными посредниками гормонов в клетке являются:

- 1) ионы кальция
- 2) ц-АМФ
- 3) ATΦ
- 4) ГДФ
- 5) кальмодулин

9. Наиболее точно механизму передачи информации в клетке соответствует следующая классификация гормонов:

- 1) По химическому строению.
- 2) По месту выработки.
- 3) По типу действия анаболические, катаболические.

10. К гормонам-производным аминокислот относятся:

- 1) вазопрессин-регулятор тонуса сосудов.
- 2) АКТГ регулятор гормонов коры надпочечников.
- 3) Меланин красящий пигмент кожи, глаз, волос.
- 4) Глюкагон- регулятор углеводного и жирового обменов.
- 5) Адреналин регулятор тонуса сосудов.

11. Все утверждения, касающиеся гормонов, справедливы, кроме:

- 1) Эффект гормонов проявляется через взаимодействие с рецепторами.
- 2) Все гормоны синтезируются в передней доле гипофиза.
- 3) Под влиянием гормонов происходит изменение активности ферментов.
- 4) Гормоны индуцируют синтез ферментов в клетках мишенях.
- 5) Синтез и секреция гормонов регулируются по механизму обратной связи.

12. Назовите гормоны, обладающие мембранным механизмом действия.

- 1) Производные арахидоновой кислоты
- 2) Производные стерана.
- 3) Производные сложных белков.
- 4) Тиреоидные гормоны.
- 5) Производные аминокислот.

13. Гормоны влияют на:

- 1) увеличение количества рецепторов.
- 2) конформацию липидов мембран.
- 3) концентрацию ферментов.
- 4) специфичность рецепторов.
- 5) транспортные системы мембран.

14. Биологическая роль фибронектина

- а) транспорт липидов
- б) резервный белок
- в) способствует адгезии клеток
- г) каталитическая

15. Какие аминокислоты составляют основную часть коллагена?

- а) аланин
- б) пролин
- в) оксипролин
- г) глицин
- д) лизин

16. Содержание органических веществ в эмали составляет:

- a) 1,5%
- б) 3%
- в) 5%
- г) 10%

17. Бактерицидным действием обладают следующие ферменты слюны:

- а) фосфатазы
- б) эластаза
- в) лизоцим
- г) глюкозилтрансфераза
- д) сахараза

18. Содержание лейкоцитов в десневой жидкости при воспалении:

- а) не изменяется
- б) увеличивается
- в) не изменяется количественно, но меняется их состав
- г) резко уменьшается

19. К ферментам десневой жидкости с деструктивным действием на ткани пародонта относятся:

- а) миелопероксидаза
- б) лактатдегидрогеназа
- в) коллагеназа
- г) мальтаза

20. Укажите оптимальное значение рН для амилазы слюны:

- a) 7,1-7,2
- б) 1.5-2.5
- в) 8,0-9,0
- г) 6,2
- д) 4,5-6.5.

Ситуационные задачи

Задача №1.

В качестве антикоагулянтов используют разнообразные вещества, в том числе полисахарид естественного происхождения, а именно:

- А Гепарин
- В Гиалуроновая кислота
- С Дерматансульфат
- D Хондроитинсульфат
- Е Декстран

Ответ.

А. Гепарин. Прямой антикоагулянт — гепарин относится к семейству гликозаминогликанов, его молекула представлена несколькими полисахаридными цепями, связанными с общим белковым ядром.

Задача №2.

При исследовании крови больного обнаружено значительное увеличение активности МВ-формы КФК (креатинфосфокиназы) и ЛДГ-1. Какая возможна патология:

- А. Инфаркт миокарда
- В. Гепатит
- С. Ревматизм
- D. Панкреатит
- Е. Холецистит

Ответ.

А. Инфаркт миокарда. Каждая клетка организма содержит определенный набор ферментов. Некроз клеток сопровождается выходом ферментов в кровь, что является диагностическим тестом. Таким диагностическим тестом инфаркта миокарда является увеличение в крови активности креатинфосфокиназы, ЛДГ-1, АлАТ, АсаТ, поступающих из кардиомиоцитов.

Залача №3.

В	крови	больного	об	наружено	П	овышение
активности	ЛДГ-1,	ЛДГ-2,	AcAT,	КФК.	В	каком
органе	наиболее	вероятно	развитие		патологического	
процесса?						

- А. Печень
- В. Поджелудочная железа
- С. Сердце
- D. Почки
- Е. Скелетные мышцы

Ответ.

С. Сердце. Каждая клетка организма содержит определенный набор ферментов. Некроз клеток сопровождается выходом ферментов в кровь, что является диагностическим тестом. Таким диагностическим тестом инфаркта миокарда является увеличение в крови активности креатинфосфокиназы, ЛДГ-1, АлАТ, АсаТ, поступающих из кардиомиоцитов.

Задача №4.

Активность каких ферментов следует определить с диагностической и прогностической целью, если в клинику поступил больной с патологией сердечной мышцы?

- А. Аргиназы, пептидазы, фосфатазы
- В. Креатинфосфокиназы, АлАТ, АсАТ
- С. Лизоцима, цитратсинтазы, альдолазы
- D. Нейраминидазы, гексокиназы, пируваткиназы
- Е. ПДГ, МДГ, ИДГ, КГДГ

Ответ.

В. Креатинфосфокиназа, АлАТ, АсАТ. Каждая клетка организма содержит определенный набор ферментов. Некроз клеток сопровождается выходом ферментов в кровь, что является диагностическим тестом. Таким диагностическим тестом инфаркта миокарда является увеличение в крови активности креатинфосфокиназы, ЛДГ-1, АлАТ, АсаТ, поступающих из кардиомиоцитов.

Задача №5.

Какое количество молекул ATФ может синтезироваться при полном окислении ацетил-КоА в цикле трикарбоновых кислот?

- A. 10
- B. 1
- C. 5
- D. 8
- E. 3

Ответ.

А. 10. Энергетический баланс цикла трикарбоновых кислот, в котором сгорает ацетил-КоА, равен 10 молекулам АТФ, из которых 1 молекула (Γ ТФ) образуется в самом цикле в процессе субстратного фосфорилирования и 11 — в митохондриях в процессе окислительного фосфорилирования

Задача №6.

Назовите фермент, определение которого в крови является наиболее информативным в первые часы после возникновения инфаркта миокарда:

- В. Лактатдегидрогеназа
- С. Аспартатаминотрансфераза
- D. Аланинаминотрансфераза
- Е. КФК
- Е. Глутаматдегидрогеназа

Ответ.

D. Креатинфосфокиназа (КФК). Наиболее информативным диагностическим тестом инфаркта миокарда является повышение в крови активности КФК в первые часы после его возникновения.

Задача №7.

- В отделение интенсивной терапии поступила женщина 50 лет с диагнозом инфаркт миокарда. Активность какого фермента будет самой высокой в первые двое суток?
 - А. Аланинаминотрансферазы
 - В. Аспартатаминотрансферазы
 - С. Аланинаминопептидазы
 - D. Сорбитдегидрогеназы
 - Е. Щелочной фосфатазы

Ответ.

В. Аспартатаминотрансферазы. Одним из диагностических тестов инфаркта миокарда является повышение в крови в течение первых двух суток активности аспартатаминотрансферазы.

Задача №8.

- В сыворотке крови больного высокая активность изофермента ЛДГ1. Патологический процесс в каком органе имеет место?
 - А. Печень
 - В. Сердце
 - С. Скелетные мышцы
 - D. Поджелудочная железа
 - Е. Почки

Ответ.

В. Сердце. ЛДГ (лактатдегидрогеназа) - это фермент, который имеет 5 изоформ: ЛДГ1 (H4), ЛДГ2 (H3M1), ЛДГ3 (H2M2), ЛДГ4 (H1M3), ЛДГ5 (M4) ЛДГ1 расположена в сердце, поэтому высокая активность этой изоформы в крови свидетельствует о патологическом процессе в миокарде.

Задача №9.

Цианистый калий является ядом, смерть организма наступает мгновенно. На какие ферменты в митохондриях он действует?

- A. Цитохром b_5
- В. Флавиновые ферменты
- С. Цитохромоксидазы аа₃
- D. НАД+-зависимые дегидрогеназы
- E. Цитохром P-₄₅₀

Ответ.

С. Цитохромоксидазы аа_{3.} Во внутренней мембране митохондрий расположены ферменты и коферменты дыхательной цепи, объединенные в комплексы.

Последний комплекс цитохромоксидаза **aa**₃ передает электроны непосредственно на кислород. Цианиды вызывают необратимое ингибирования цитохромоксидазы: прекращается тканевое дыхание и наступает смерть.

Задача №10.

В регуляции активности ферментов важное место принадлежит их постсинтетичний ковалентной модификации. Каким из указанных механизмов осуществляется регуляция активности гликогенфосфорилазы и гликогенсинтетазы?

- А. Аденилирование
- В. Метилирование
- С. Фосфорилирование-дефосфорилирования
- D. Ограниченный протеолиз
- Е. АДФ-рибозилирование

Ответ.

С. Фосфорилирование-дефосфорилирования. Одним из видов регуляции активности ферментов является их ковалентная модификация. Фосфорилирование - присоединение остатка фосфорной кислоты, дефосфорилирования — его отщепление Ключевую роль в регуляции синтеза и распада гликогена играют ферменты гликогенсинтаза и гликогенфосфорилаза. Оба эти ферменты существуют в двух формах, способных к взаимопревращения с изменением активности. Фосфорилаза активна в фосфорилированном остоянии, а гликогенсинтетаза, наоборот, в дефосфорилирования.

Задача №11.

При изучении свойств фермента в систему ферментсубстрат было добавлено неизвестное вещество. В результате константа Михаэлиса увеличилась в 2 раза. Какое явление имело место?

- А. Конкурентное ингибирование
- В. Неконкурентное ингибирование
- С. Безконкурентное ингибирования
- D. Аллостерическая активация
- Е. Необратимое ингибирование

Ответ.

А. Конкурентное ингибирование. Константа Михаэлиса - это та концентрация субстрата, при которой скорость ферментативной реакции равна половине максимальной. Она обнаруживает родство фермента к субстрату. Чем меньше константа, тем активнее фермент. Если константа при добавлении неизвестного вещества выросла вдвое, то это свидетельствует о ингибирования фермента. Константу Михаэлиса повышают только конкурентные ингибиторы

Задача №12.

Характерным признаком гликогеноза является боль в мышцах во время физической работы. В крови регистрируется гипогликемия. Врожденная недостаточность какого фермента приводит к этой патологии?

- А. Гликогенфосфорилазы
- В. Глюкозо-6-фосфатдегидрогеназы
- С. Альфа-амилазы
- D. Гамма-амилазы
- Е. Лизосомальной гликозидазы

Ответ.

А. Гликогенфосфорилазы. Гликогенфосфорилазы - фермент распада гликогена до глюкозо-6-фосфата в печени и мышцах. При его недостаточности теряется способность печени поддерживать уровень глюкозы крови за счет гликогенолиза, а мышцы будут иметь недостаточно глюкозы для гликолиза (для обеспечения сокращения мышц).

Задача №13.

Анаэробное расщепление глюкозы до молочной кислоты регулируется соответствующими ферментами. Укажите, какой фермент является главным регулятором этого процесса?

- А. Фосфофруктокиназы
- В. Глюкозо-6-фосфат изомераза
- С. Альдолаза
- D. Энолаза
- Е. Лактатдегидрогеназа

Ответ.

А. Фосфофруктокиназы. Регуляторным ферментом гликолиза (процесса распада глюкозы до молочной кислоты в анаэробных условиях) является фосфофруктокиназа, активатором для которой является АДФ, а аллостерическим ингибитором - АТФ. От активности этого фермента зависит скорость всего процесса.

Задача №14.

При кормлении новорожденного ребенка молоком матери появились рвота, метеоризм, понос. О наследственном дефиците какого фермента следует думать?

- А. Пепсина
- В. Мальтазы
- С. Изомеразы
- D. Олиго-1,6-глюкозидазы
- Е. Лактазы

Ответ.

Е. Лактазы. Указанные нарушения пищеварения у ребенка, который питается материнским молоком, указывают на нарушение усвоения этого пищевого компонента молока, а именно лактозы (молочного сахара). Это может быть при недостаточности у ребенка кишечного фермента лактазы.

Задача №15.

Какое вещество является основным источником энергии для мозговой ткани?

- А. Аминокислоты
- В. Жирные кислоты
- С. Глицерин
- D. Глюкоза
- Е. Молочная кислота

Ответ.

D. Глюкоза. В тканях головного мозга основным процессом, обеспечивающим клетки энергией, является аэробное окисления глюкозы. Мозг потребляет до 20% глюкозы крови.

Залача №16.

Цикл Кребса играет важную роль в реализации глюкопластичного эффекта аминокислот. Это обусловлено обязательным превращением безазотистых остатков аминокислот в:

- А. Сукцинат
- В. Малат
- С. Оксалоацетат
- D. Фумарат
- Е. Цитрат

Ответ.

С. Оксалоацетат. Глюкопластичный эффект - это синтез глюкозы из аминокислот. Если аминокислота распадается до пирувата или до метаболитов ЦТК (оксалоацетата, α -КГ, фумарата), то ее углеродный скелет может идти на синтез глюкозы (глюконеогенез). Оксалоацетат - ключевой метаболит ЦТК и субстрат глюконеогенеза

Задача №17.

У больной женщины с низким артериальным давлением после парентерального введения гормона произошло повышение артериального давления и также повысился уровень глюкозы и липидов в крови. Какой гормон был введен?

- А. Инсулин
- В. В. Глюкагон
- С. Адреналин
- D. Прогестерон
- Е. Фолликулин

Ответ.

С. Адреналин. Гормон мозгового слоя надпочечников адреналин, сужая периферические сосуды, способствует повышению артериального давления. Вместе с тем он аденилатциклазным механизмом активирует в цитоплазме гепатоцитовгликогенфосфорилазу, которая катализирует распад гликогена до глюкозы, и триацилглицероллипазу, активирующую распад жиров до глицерина и свободных жирных кислот. Как следствие в крови повышается уровень глюкозы и жирных кислот.

Задача №18.

Для сердечной мышцы характерно аэробный характер окисления субстратов. Основным из них является:

- А. Жирные кислоты
- В. Триацилглицеролы
- С. Глицерол
- D. Глюкоза
- Е. Аминокислоты

Ответ.

А. Жирные кислоты. Работа сердечной мышцы требует большого количества энергии. Известно, что окисление жирных кислот сопровождается выделением гораздо большего количества АТФ, чем окисление глюкозы.

Задача №19.

Наличием каких липидов обусловлена мутность сыворотки крови:

- А. Хиломикронов
- В. Холестерина
- С. Жирных кислот
- D. Триглицеридов
- Е. Глицерина

Ответ.

А. Хиломикронов. Хиломикроны - это липопротеины, образующие в слизистой тонкого кишечника и являются транспортными формами экзогенных липидов. Они содержат большое количество нейтральных жиров, поэтому и обусловливают мутность сыворотки крови после приема жирной пищи.

Задача №20.

- В ходе катаболизма гистидина образуется биогенный амин, обладающий мощным сосудорасширяющим действием. Назовите его:
 - А Гистамин
 - В Серотонин
 - С ДОФА
 - D Норадреналин
 - Е Дофамин

Ответ.

А. Гистамин. В результате реакции декарбоксилирования аминокислоты гистидина образуется биогенный аминов - гистамин. Гистамин расширяет периферические сосуды и вызывает снижение артериального давления. Реакцию катализирует ПАЛФ-зависимая гистидиндекарбоксилаза.