ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВЕРО-ОСЕТИНСКАЯ ГОСУДАР-СТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАФЕДРА БИОЛОГИЧЕСКОЙ ХИМИИ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по дисциплине «Клиническая биохимия»

основной профессиональной образовательной программы высшего образования – программы ординатуры по специальности 31.08.36 Кардиология (ОРД-КАРД-19-03-22)

Форма обучения:оч	ная	
Срок освоения ОПОП	ВО: 2 года	
Срок освоения ОпОП	DO. <u>210да</u>	

содержание:

No	НАЗВАНИЕ ТЕМЫ	CTP.
П/П		
1.	Обмен веществ и энергии. Общие пути катаболизма. Гликолиз.	5-35
2.	Биохимические анализы в клинической медицине. Методы клини-	36-81
	ческой биохимии	
3.	Система гемостаза	82-95
4.	Цитокины, ишемия и реперфузия: клинические аспекты.	96-103

СПИСОК СОКРАЩЕНИЙ

АКТГ - адренокортикотропный гормон

17-КС - 17-кетостероиды

17-ОКС - 17-оксикетостероиды

2,4-ДНФГ - 2,4-динитрофенилгидразин

АДФ – аденозиндифосфат

АТФ – аденозинтрифосфат

АЧТВ - активированное частичное тромбопластиновое время

АлАТ – аланинаминотрансфераза

АФП - альфа-1-фетопротеин

АДГ - антидиуретический гормон

АсАТ – аспартатаминотрансфераза

БОФ - белки острой фазы

БКЗ - бромкрезоловый зеленый

БКФ - бромкрезоловый фиолетовый

БФС - бромфеноловый синий

БО - буферные основания

ВМК - ванилилминдальная кислота

ВЭЖХ - высокоэффективная жидкостная хроматография

ГГТП - гамма-глутамилтранспептидаза

ГК – гексокиназа

ГлДГ – глутаматдегидрогеназа

Г-6-ФДГ - глюкозо-6-фосфатдегидрогеназа

ГВК - гомованилиновая кислота

ГРГ - гонадотропин-рилизинг гормон

ГРИГ - гонадотропин-рилизингингибирующий гормон

ИФА - иммуноферментный анализ

ИХЭД - иммунохроматографическая экспресс-диагностика

ИАП - ингибиторы активаторов плазминогена

КОС - кислотно-основное состояние

КРГ - кортикотропин-рилизинг гормон

КК – креатинкиназа

КБГ - кумасси бриллиантового голубого

ЛДГ – лактатдегидрогеназа

ЛЖСС - латентная (ненасыщенная) железосвязывающая

НЖСС – насыщенная железом способность сыворотки

ЛПВП - липопротеиды высокой плотности

ЛПОНП - липопротеиды очень низкой плотности

ЛППП - липопротеиды промежуточной плотности

ЛГ - лютеинизирующий гормон

МДГ – малатдегидрогеназа

МНО - международное нормализованное отношение

МЕ - международные единицы

МСГ - меланоцит-стимулирующий гормон

МК - мочевая кислота

НО (ВЕ) - недостаток оснований

НСЕ - нейронспецифическая енолаза

НЭЖК - неэтерифицированные жирные кислоты

НАД – никотинамидадениндинуклеотид

НАДФ – никотинамидадениндинуклеотидфосфат

ОМ - опухолевые маркеры

ОФ - острая фаза

ПТТГ - пероральный тест на толерантность к глюкозе

п-НФ - п-нитрофенилфосфат

п-НФФ - п-нитрофенилфосфат

ПДФ - продукты деградации фибриногена

ПРГ - пролактин-рилизинг гормон

ПРИГ - пролактин-рилизингингибирующий гормон

ПСА - простатспецифический антиген

ПВ - протромбиновое время

ПО - протромбиновое отношение

РИА - радиоиммунный анализ

РЭА - раково-эмбриональный антиген

РФМК - растворимые фибрин-мономерные комплексы

РЭС - ретикуло-эндотелиальная система

СКФ - скорость клубочковой фильтрации

СТРГ - соматотропин-рилизинг гормон

СТГ - соматотропный гормон

СРБ - С-реактивный белок

ССК - сульфосалициловая кислота

ТРГ - тиреотропин-рилизинг гормон

ТТГ - тиреотропный гормон

ТПА - тканевой активатор плазминогена

ТГ – триглицериды

ТХУ - трихлоруксусная кислота

TAFI - тромбин-активируемый ингибитор фибринолиза

ТВ - тромбиновое время

УПА - урокиназный активатор плазминогена

ФСГ - фолликулостимулирующий гормон

ХМ – хиломикроны

ХС - холестерин

ХЭ – холинэстераза

ХГЧ - хорионический гонадотропин человека

ДГЭА – дегидроэпиандростерон

ДГЭА-С - дегидроэпиандростерон-сульфат

АМСт - антитела к микросомальному антигену тиреоцитов

Е2 – эстрадиол

SHBG - глобулин, связывающий половые гормоны

ТЕМА: ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ. ОБЩИЕ ПУТИ КАТАБОЛИЗМА. ГЛИКОЛИЗ.

Основные вопросы темы.

- 1) Взаимосвязь обмена веществ и энергии
- 2) Понятие о тканевом дыхании
- 3) Понятие о митохондриальной цепи переноса электронов
- 4) Сопряжение тканевого дыхания и синтеза АТФ
- 5) Дыхательный контроль
- 6) Разобщение дыхания и синтеза АТФ
- 7) Терморегуляторная функция дыхания
- 8) Ингибиторы дыхания
- 9) Катаболизм глюкозы (анаэробное и аэробное окисление глюкозы). Биологическое значение гликолиза
- 10) Связь гликолиза и ЦТК. Энергетический выход данных процессов

Актуальность темы.

Биоэнергетика — раздел биохимии, изучающий биохимические механизмы, приводящие к генерации различных форм биологической энергии, процессы превращения и запасания энергии в живых системах. К настоящему времени сформулированы три основных закона биоэнергетики:

- 1. Живая клетка избегает прямого использования энергии внешних ресурсов для совершения полезной работы. Она сначала превращает их в одну из трех конвертируемых форм энергии («энергетических валют»).
- 2. Любая живая клетка всегда располагает как минимум **двумя** «энергетическими валютами»: одна водорастворимая ($AT\Phi$) и вторая связанная с мембраной (протонный или Na^+ градиент мембранного потенциала).
- 3. «Энергетические валюты» клетки могут превращаться одна в другую. Поэтому получения хотя бы **одной** из них за счет внешних ресурсов достаточно для поддержания жизнедеятельности клетки.

Каждое органическое соединение обладает определенным запасом внутренней энергии (U). Часть этой внутренней энергии молекулы может быть использована для совершения полезной работы. Эту энергию называют свободной энергией (G) молекулы. Источники энергии для организма — это химические реакции, в которых молекулы, содержащие атомы углерода в восстановленном состоянии, подвергаются окислению. При этом специальные дыхательные переносчики (молекулы НАД+ и ФАД) присоединяют протоны и электроны (восстанавливаются) и в таком виде транспортируют атомы водорода в дыхательной цепи.

Эндергонические реакции — это химические реакции, требующие притока энергии для их осуществления. В этих реакциях изменение свободной энергии ΔG положительная величина ($\Delta G > 0$).

Экзергонические реакции – это реакции, в которых энергия выделяется, т.е. они идут с выделением энергии. В таких реакциях изменение свободной энергии ΔG – отрицательная величина ($\Delta G < 0$).

Внутриклеточные химические реакции могут быть представлены в виде:

- 1. катаболических (экзергонических) реакций;
- 2. анаболических (эндергонических) реакций.

3.

Эндергонические реакции	Экзергонические реакции
∆G положительное	∆G отрицательное
1. Реакция протекает только при	1. Реакция протекает самопроизволь-
поступлении свободной энергии.	но и сопровождается уменьшением
	свободной энергии.
2. Если абсолютное значение ΔG	2. Если абсолютное значение ΔG ве-
велико, то система устойчива и	лико, то реакция идет практически до
реакция не осуществляется.	конца (необратимая).
4. Это всегда энергетически	3. Это энергодающие реакции, они
сопряженные реакции, т.к. им необ-	служат источниками энергии для
ходим приток энергии от экзергони-	других реакций или процессов.
ческих реакций.	
4. Анаболические реакции.	4. Катаболические реакции.

Пример сопряженных реакций: Реакция фосфорилирования глюкозы свободным фосфатом с образованием глюкозо-6-фосфата является эндерго нической:

1. Глюкоза + H3PO4 \rightarrow Глюкозо-6-фосфат + H2O ($\Delta G = + 13.8$ кДж/моль).

Самопроизвольно такая реакция осуществиться не может. Еè течение требует притока энергии. Для протекания этой реакции в сторону образова ния глюкозо-6-фосфат необходимо еè сопряжение с другой реакцией, в кото рой энергия выделяется в заведомо большем количестве, чем требуется для фосфорилирования глюкозы. Такой реакцией является реакция гидролиза ATФ.

2. $AT\Phi \rightarrow AД\Phi + H3PO4 (\Delta G = -30,5 кДж/моль)$

При сопряжении процессов (1) и (2) в реакции, катализируемой гексокиназой, фосфорилирование глюкозы легко протекает в физиологических условиях; равновесие реакции сильно сдвинуто вправо и она практически необратима:

3. Глюкоза + $AT\Phi \rightarrow \Gamma$ люкозо-6-фосфат + $AД\Phi$ ($\Delta G = +13.8 + -30.5 = -16.7$ кДж/моль)

В живых системах в отношении направления биологических процессов действует принцип: эндергонические реакции проходят за счет энергии осво бождающейся в экзергонических реакциях.

Анаболические (биосинтетические) процессы, требующие притока энергии, протекают за счет энергии катаболических процессов (процессов распада молекул).

Макроэргические соединения.

Макроэргические соединения – соединения, содержащие макроэргиче скую связь, при гидролизе которой освобождается энергия больше чем 30 кДж/моль.

К клеточным макроэргическим соединениям относят фосфоенолпи руват, 1,3-дифосфоглицерат, которые образуются в гликолизе (в процессе распада глюкозы до пирувата). К ним относят также сукцинил~СоА (образу ется в цикле трикарбоновых кислот, переносит фосфатную группу на ГДФ) и креатинфосфат, являющиеся субстратами, так называемого субстратного фосфорилирования, при котором их макроэргическая связь используется для синтеза АТФ.

Макроэргическими соединениями являются также ацил~CoA и все соединения, содержащие сложную тиоэфирную группу, а также карбамоилфосфат (образуется в первой реакции цикла мочевины) и аргининфосфат, гистидинфосфат (имидазолфосфат) и все нуклеозиддифосфаты и нуклеозитрифосфаты.

Эти молекулы обладают большим потенциалом переноса фосфатной группы на АДФ с образованием АТФ, потому что энергия, выделяемая при распаде этих макроэргических молекул более высокая, чем требуется для синтеза АТФ из АДФ. По отношению к АДФ, перечисленные макроэргические молекулы доноры энергии.

В свою очередь $AT\Phi$ – источник энергии для важных метаболических путей, в которых идут превращения глюкозы, фруктозы и многих других молекул. Получая фосфатную группу от $AT\Phi$, эти молекулы увеличивают уровень своей свободной энергии (G), что обеспечивает течение ряда ферментативных реакций и клеточных процессов.

Таким образом, АТФ среди клеточных фосфорилированных соединений (по уровню свободной энергии) занимает некоторое промежуточное положение. Это определяет особое биологическое значение АТФ как универсального донора энергии в огромном числе реакций. Поэтому АТФ называют «энергетической валютой». Вместе с тем, АДФ универсальный акцептор энергии (и фосфатной группы) от клеточных макроэргов, которые обладают более высоким уровнем свободной энергии. Цикл АТФ-АДФ - основной механизм обмена энергии в клетке. Расчеты показывают, что в организме в сутки образуется и распадается 40-45 кг АТФ.

В зависимости от вида использования энергии все организмы делятся на фотомрофные (использование энергии солнечного излучения) и хемомрофные (использование энергии химических веществ). К фототрофным относят все растения, к хемотрофам – животных и человека.

Живые организмы находятся в постоянной и неразрывной связи с окружающей средой. Эта связь осуществляется в процессе обмена веществ, ко-

торый включает *3 этапа:* поступление веществ в организм, метаболизм и выделение конечных продуктов из организма.

Поступление веществ происходит в результате дыхания и питания. В желудочно-кишечном тракте происходит переваривание (гидролиз полимеров - белков, полисахаридов, липидов и других сложных органических веществ) до мономеров.

Мономеры всасываются и включаются в промежуточный обмен, который состоит из 2 типов реакций: катаболизма и анаболизма.

Kamaболизм — процесс расщепления органических молекул до конечных продуктов (CO_2 , H_2O и мочевины). Реакции сопровождаются выделением энергии.

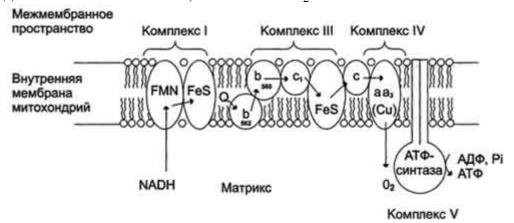
Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В этих реакциях используется энергия, освобождающаяся при катаболизме.

Процессы катаболизма в клетках животных и человека сопровождаются потреблением кислорода, который необходим для реакций окисления. В результате этих реакций происходит освобождение энергии, которая необходима организмам в процессе жизнедеятельности для осуществления различных видов работы. Энергия необходима для поддержания температуры тела, выполнения химической работы (синтез органических соединений, усложнения химической структуры), активного транспорта веществ через мембраны, механической работы (мышечное сокращение), а так же для генерирования электрического тока и иногда света (биолюминесценция)

Носителями энергии являются электроны, формирующие связи между атомами в органических субстратах. Для использования этой энергии необходимо расщепление молекул субстрата и освобождение энергии электронов. Источником этой энергии являются процессы биологического окисления, сопряженного с окислительным фосфорилированием, происходящим в организме человека и животных.

Биологическое окисление — это окисление ионов водорода молекулярным кислородом с образованием эндогенной воды. Основным источником энерегии являются соединения ионов водорода, отщепляемого от распадающегося субстрата с O_2 в дыхательной цепи.

Дыхательная цепь (цепь переноса электронов) представляет собой биохимическую систему во внутренней мембране митохондрий, состоящую из ряда переносчиков электронов и протонов, транспортирующих электроны от окисляющегося субстрата к вдыхаемому кислороду. Дыхательная цепь в процессе миграции по ней электронов обеспечивает постепенную (ступенчато) отдачу им своей избыточной энергии, которая частично (40-50%) переходит в энергию трансмембранного электрохимического потенциала, а затем аккумулирует в синтезирующиеся молекулы АТФ. Часть энергии электронов (50-60%) расходуется в виде тепла, что необходимо для поддержания температуры тела. Происходит сопряжение процессов биологического окисления и окислительного фосфорилирования.


Основной путь переноса электронов и протонов (полная дыхательная цепь) включает в себя *4 ферментных комплекса*:

Комплекс 1 - называется НАДН - КоQ (убихинон)- оксидоредуктаза и обеспечивает передачу электронов от НАДН Н⁺ к КоQ.

Комплекс 2 - сукцинат - KoQ -оксидоредуктаза - катализирует перенос электронов от сукцината (ацилов жирных кислот) на KoQ.

Ферментный комплекс 3 называется KoQ H -цитохром с - оксидоредуктаза (комплекс вс) и передает электроны от KoQ H на цитохром с.

Ферментный комплекс 4 - цитохромоксидаза, катализирует перенос электронов от цитохрома с на кислород. В этот комплекс входят цитохром а и a_3 , содержащие два гема и два иона Cu^{2+} , которые меняя валентность с Cu^{2+} на Cu^+ и обратно, принимают и отдают электроны на цитохром a_3 , электроны присоединяются к ионам Cu^{2+} , а от них на O_2 .

Локализуется во внутренней мембране митохондрий и располагается ассиметрично.

Последовательность расположения компонентов дыхательной цепи определяется большей или меньшей выраженностью у них окислительной и восстановительной способности, которая характеризуется *окислительновосстановительным потенциалом* (редокс потенциал). Чем отрицательнее редокс - потенциал, чем сильнее восстанавливающая способность, то есть способность отдавать электроны, тем большей энергией эти электроны обладают. Наибольшей окислительной способностью (принимать электроны) обладает О₂, и его редокс-потенциал имеет наибольшую величину.

Она достигает в ЦПЭ - 1,2 в, что соответствует освобождению 220 кДж энергии в расчете на 1 моль H^+ (52,7 ккал/моль) в стандартных условиях измерения. В физиологических же условиях в клетке эти величины составляют 380 кДж или 90 ккал/моль).

Митохондриальная дыхательная цепь *укорачивается* в том случае, если субстрат дегидрируется сразу флавиновым ферментом (с коферментом ФАД). При этом электроны и протоны с такого субстрата сразу передаются через Φ АД убихинону.

Редокс-потенциал у подобных субстратов выше, чем у тех, которые окисляются НАД⁺-зависимой дегидрогеназой, запас энергии у электронов

меньше, поэтому трансмембранный потенциал возникает меньшей величины и вследствие этого синтезируется меньшее количество АТФ- (1,5 молекулы).

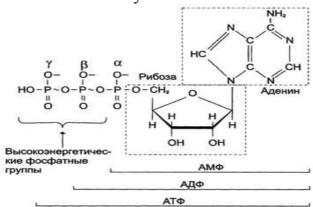
Окислительным фосфорилированием называется синтез АТФ путем фосфорилирования АДФ, используя энергию трансмембранного электрохимического потенциала, возникающего при освобождении энергии электронов в процессе миграции их по дыхательной цепи к вдыхаемому O_2

Коэффициент фосфорилирования (P/O) это соотношение количеств израсходованного на синтез $AT\Phi$ фосфора H_3PO_4 и поглощенного O_2 . Он выражает эффективность функционирования цепи транспорта электронов: чем выше коэффициент, тем больше синтезируется $AT\Phi$ в расчете на пару переносимых электронов. В полной дыхательной цепи коэффициент равен 2,5, в случае же укороченной равен 1,5.

Согласно химиосмотической гипотезе Митчела-Скулачева основным фактором сопряжения окисления и фосфорилирования является протонный градиент. Часть энергии электронов окисленного субстрата в процессе их миграции по дыхательной цепи трансформируется в энергию трансмембранного электро-химического потенциала, создаваемого путем перекачки протонов из матрикса митохондрий в межмембранное пространство. В дальнейшем протоны через канал сопрягающего устройства возвращаются в матрикс (замыкается протонный цикл), концентрация протонов выравнивается, мембрана разряжается, а энергия трансмембранного электрохимического градиента используется для синтеза АТФ.

Трансмембранный электрохимический потенциал и протонный потенциал, протон - движущая сила (Δ μ H) - это градиент концентрации ионов водорода и электрических зарядов по обе стороны внутренней мембраны митохондрий. Этот потенциал слагается из разности электрических зарядов (Δ ψ) равной около 0,206 и градиента ионов водорода (Δ μ H) - около 0,056. Общая величина Δ μ H = 0,25 в. Протонный потенциал возникает путем перекачки μ H из матрикса в межмембранное пространство за счет энергии транспорта электронов. В каждой точке сопряжения и фосфорилирования в межмембранное пространство поступает не менее 2 μ H.

Под сопряжением понимают превращение энергии транспорта электронов в промежуточную форму - в энергию трансмембранного потенциала с последующим использованием ее для фосфорилирования АДФ, то есть синтеза АТФ. Протонный градиент создается путем выталкивания ионов водорода в трех участках дыхательной цепи: при переходе электронов с ФМН H_2 через FeS-белок на KoQ, при переходе электронов с KoQ H_2 через FeS-белок на цитохром c_1 и при транспорте электронов от цитохрома а a_3 к O_2 . Эти участки обозначены как пункты сопряжения.


Сопрягающее устройство является биохимической системой, осуществляющей фосфорилирование АДФ (синтез $AT\Phi$) за счет энергии протонного потенциала. Локализовано оно в грибовидных выступах внутренней мембраны митохондрий. Одна часть - это белковый канал (F_0) , другая - (F_1) - это фермент H^+ - $AT\Phi$ -синтетаза. Поток протонов через сопрягающее устройство сопровождает разряд мембраны и выделение свободной энергии, обуславли-

вает синтез АТФ из АДФ и H_3PO_4 . При этом происходит либо активирование фосфата, либо конформационные изменения белка.

Эти процессы являются общими для всех органических субстратов, именно они нарабатывают энергию для процессов жизнедеятельности, нарушение которых приводит к развитию патологических процессов. Поэтому очень важно для студентов знать основы биоэнергетики, процесс биологического окисления и окислительного фосфорилирования.

Роль АТФ в метаболизме и функции клетки.

Все живые клетки используют в качестве «горючего» небольшую молекулу под названием аденозинтрифосфат (АТФ). Этот универсальный источник энергии питает биологические реакции, обеспечивающие функционирование клеток и процветание всего живого организма. АТФ — незаменимый «игрок» на биологическом поле. Молекула АТФ, известная прежде всего как универсальный источник энергии для всех живых клеток, выполняет также коммуникативные функции, влияющие на поведение клеток. АТФ — поистине вездесущая молекула, но ее влияние на разные ткани и органы варьирует, что позволяет по-новому взглянуть на происхождение многих заболеваний и наметить пути к их лечению.

Обнаружилось, однако, что эта самая востребованная человеческим организмом молекула выполняет еще одну, совсем другую, но не менее значимую функцию. Результаты многолетних исследований показывают, что АТФ, вне всякого сомнения, еще и важная сигнальная молекула, обеспечивающая связь между клетками и тканями по всему организму. Оказывается, АТФ — не только универсальный источник энергии, но и универсальный «связной».

Предположение о двойной роли АТФ было впервые высказано в начале 1950-х гг. и воспринято без всякого энтузиазма. Однако за последние 15 лет появилось множество данных, проливающих свет на то, как именно молекулы АТФ воздействуют на клетку, находясь не внутри нее, а снаружи, и как они участвуют в выполнении органами и тканями их повседневных функций. Поскольку влияние данной молекулы на физиологию организма и состояние его здоровья уникально по своей широте, сегодня лаборатории в самых разных странах упорно работают над тем, чтобы извлечь из этого свойства максимальную пользу для медицины.

До 1929 г., когда была обнаружена АТФ, по всему миру шли интенсивные поиски неуловимого внутриклеточного источника энергии. Почти одновременно Карл Ломан (Karl Lohmann) и лауреат Нобелевской премии 1922 г. Отто Мейергоф (Otto Meyerhof) из Института медицинских исследований Кайзера Вильгельма в Хайдельберге, с одной стороны, и Сайрус Фиск (Cyrus H. Fiske)вместе со своим аспирантом Иеллапрагадой Субба Роу (Yellapragada Subba Row) из Гарвардской медицинской школы — с другой, показали, что на внутриклеточные процессы, которые обеспечивают сокращение мышечных клеток, влияет молекула, состоящая из аденозина (соединения азотистого основания аденина с сахарным остатком)и трех фосфатных групп. В 1935 г. Катаси Макино (Katashi Makino) из Даляньской больницы в Маньчжурии предложил структуру молекулы, правильность которой подтвердили десять лет спустя Бэзил Литго (Basil Lythgoe) и Александер Тодд (Alexander Todd) из химической лаборатории Кембриджского университета.

За весь этот период не появилось ни одного свидетельства участия АТФ в процессах, протекающих вне клеток. Ситуация изменилась лишь в 1962 г. Молодой нейрофизиолог из Мельбурнского университета в Австралии, Бернсток, исследуя процессы передачи информации вегетативной нервной системой (в числе прочего она контролирует сокращение стенок мочевого пузыря и кишечника), обнаружил коммуникативную связь, в которой не принимают участия такие общеизвестные нейромедиаторы, как ацетилхолин или норадреналин. Незадолго до этого (1959 г.) Памела Холтон (Pamela Holton) из Кейбриджской физиологической лаборатории предположила, что сенсорные нервные клетки секретируют молекулы АТФ, и Бернсток решил проверить, могут ли они отвечать за коммуникацию между двигательными нейронами и мышцами. Необходимо было блокировать передачу информации гладким мышцам с помощью традиционных нейромедиаторов. На эксперименты ушло более десятилетия, и только в 1972 г. Бернсток счел возможным обнародовать свое предположение о существовании «пуринэргических нервных клеток», которые используют ATФ в качестве нейромедиатора.

Электрические импульсы, генерируемые нервными клетками, распространяются по всей длине нейрона, но электрический заряд не может преодолеть крошечный зазор — синаптическую щель — между двумя нейронами или перескочить с нервного окончания на мышечную клетку. Послания передаются от клеток к клеткам с помощью таких нейромедиаторов, как ацетилхолин, глутамат, дофамин. Они высвобождаются в синаптическую щель нейроном, генерирующим импульсы, и связываются с рецепторами следующего нейрона. В нем происходит ряд изменений, приводящих в конце концов к генерации импульсов, которые инициируют сокращение или расслабление мышц. Таким образом, информация передается от нейрона к нейрону в виде чередующихся электрических и химических разрядов.

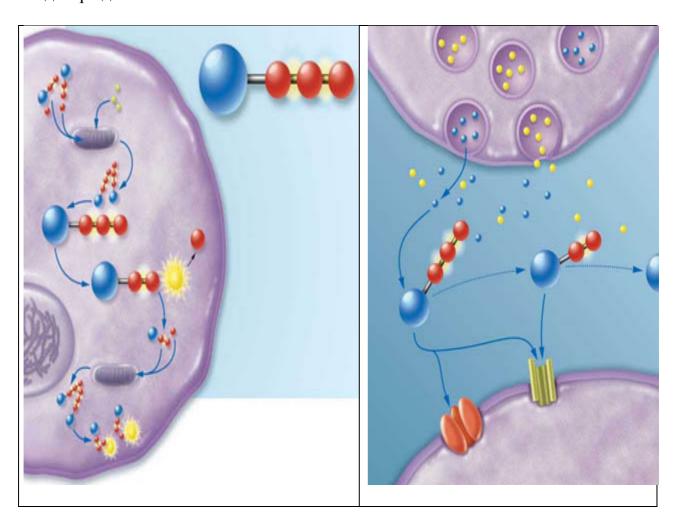
Долгое время считалось, что каждый нейрон высвобождает нейромедиаторы только одного типа. Соответственно, клетки, секретирующие ацетилхолин, назвали холинэргическими, дофамин — дофаминэргическими и т.д. Концепция Бернстока о наличии пуринэргических нейронов основыва-

лась не только на его собственных наблюдениях, но и на результатах работ нейрофизиологов из Мельбурнского и Лондонского университетов, в числе которых Макс Беннет (Max Bennett), Грейм Кэмпбелл (Graeme Campbell), Молли Хоулман (Mollie Holman) и Майк Ранд (Mike Rand).

Долгое время считалось, что каждый нейрон высвобождает нейромедиаторы только одного типа. Соответственно, клетки, секретирующие ацетилхолин, назвали холинэргическими, дофамин — дофаминэргическими и т.д. Концепция Бернстока о наличии пуринэргических нейронов основывалась не только на его собственных наблюдениях, но и на результатах работ нейрофизиологов из Мельбурнского и Лондонского университетов, в числе которых Макс Беннет (Мах Bennett), Грейм Кэмпбелл (Graeme Campbell), Молли Хоулман (Mollie Holman) и Майк Ранд (Mike Rand).

Несмотря на множество данных в пользу того, что АТФ высвобождается нейронами мышц кишечника и мочевого пузыря, многие нейрофизиологи сомневались в существовании нервных клеток, которые используют АТФ в качестве нейромедиатора. Сомнения были связаны в первую очередь с тем, что,по мнению ученых, такая вездесущая молекула вряд ли способна осуществлять специфические функции. Далее, необходимым условием выполнимости ею роли нейромедиатора было существование подходящего рецептора на поверхности клетки-мишени, но такового не обнаруживалось. И тогда начался его поиск.

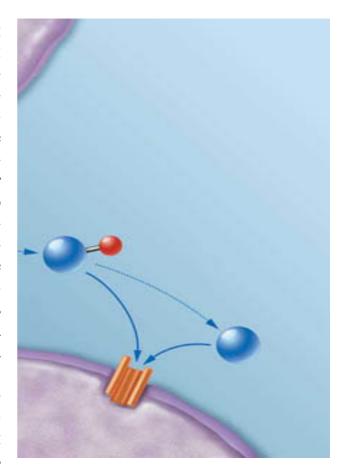
В то же время не прекращались попытки выяснить, каким именно образом молекулы АТФ, секретируемые нейронами, передают информацию мышечным и другим клеткам. Основываясь на результатах исследований, Бернсток в 1978 г. предположил, что у АТФ и конечного продукта его расщепления аденозина существуют раздельные семейства рецепторов — он назвал их Р2 и Р1 соответственно. Дальнейшие эксперименты показали, что активация Р2-рецептора под действием АТФ приводит к разным последствиям, а это значит, что, по-видимому, есть два подтипа данных рецепторов. Бернсток и его сотрудники назвали их Р2Х и Р2Ү.


И все же сама идея, что нервные клетки используют АТФ в качестве нейромедиатора, вызывала сомнения. Только в 1990-х гг. появились молекулярные методы, с помощью которых сразу в нескольких лабораториях были идентифицированы рецепторы АТФ, что сразу позволило исследовать все многообразие действий, оказываемых этой молекулой на нервные и другие клетки.

Запомните!

- Хранилищами энергии в молекуле АТФ служат химические связи между тремя фосфатными группами. К ним присоединена молекула аденозина, одного из двух пуриновых азотистых оснований, входящих в состав ДНК
- АТФ синтезируется в особых клеточных структурах митохондриях.

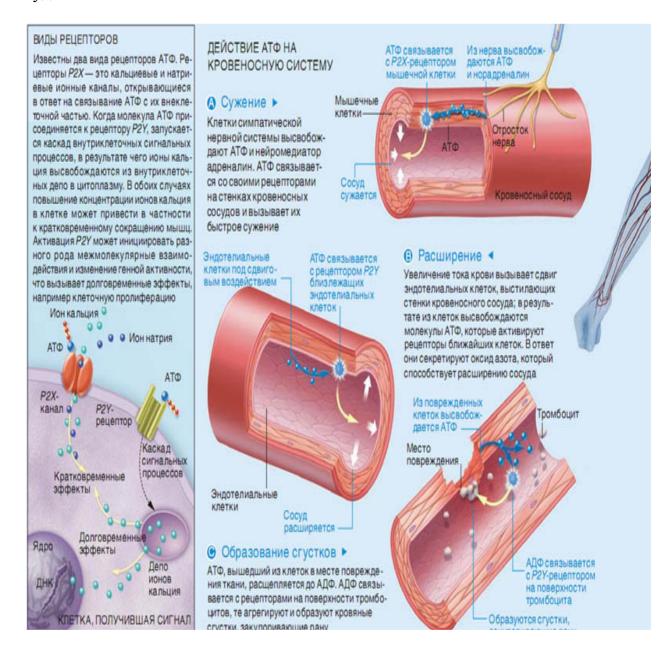
Одним из главных участ ников процесса служат протоны (H+), высвобождаемые из молекул глюкозы при их расщеплении. В митохондриях (1) протоны участвуют в присоединении фосфатной группы к аденозинди фосфату (АДФ), в результате чего образуется АТФ, который выходит в цитоплазму (2). При отщеплении от АТФ концевой фосфатной группы (3) выделяется энергия, которая используется в частности для синтеза белков. АДФ и свободный фосфат воссоединяются с образованием АТФ (4).

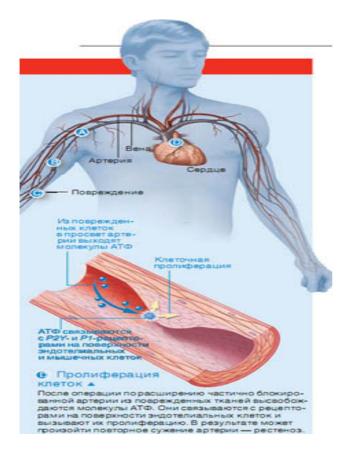

В 1990-х гг. начались работы над проектом «Геном человека», и вскоре были идентифицированы гены, кодирующие жизненно важные белки человека, в том числе гены, которые детерминируют синтез белков некоторых АТФ-рецепторов. Затем удалось локализовать и сами рецепторы на различных клетках. Изучение сигнальной системы с участием АТФ стало началом новой эры в области межклеточных коммуникаций. Детальное исследование молекулярной структуры пуриновых рецепторов привело к открытию крупного их семейства и обнаружению на клеточной поверхности целого ряда каналов и ферментов, принимающих участие в передаче АТФ-сигналов. Как и ожидалось, было выявлено два обширных класса рецепторов, но каждый из них был представлен гораздо большим числом подтипов, чем предполагалось. Такое разнообразие подразумевало, что каждый из подтипов может стать мишенью для «своего» вещества, способного влиять на АТФ-сигналы только в специфических тканях и клетках. И уже сегодня получены этому подтверждения.

Как показали дальнейшие исследования, механизм действия двух типов рецепторов существенно различается. Р2Х-рецепторы относятся к суперсемейству ионных каналов, открываемых нейтромедиаторами. Один из нас (Как) совместно с другими исследователями обнаружил, что, связываясь с АТФ, Р2Х-рецепторы «открываются» в буквальном смысле этого слова и образуют трансмембранный канал, по которому в клетку устремляются натриевые и кальциевые ионы. В отличие от этого рецепторы Р2У при связывании с АТФ запускают в клетке каскад межмолекулярных взаимодействий, в результате которых в цитоплазму высвобождаются внутриклеточные запасы кальция. И в том, и в другом случае кальций может повлиять на другие события на молекулярном уровне и изменить поведение клетки.

Молекула АТФ находится в синаптической щели совсем не долго, но ее влияние на активацию рецептора в одних случаях оказывается кратковременным, порядка миллисекунд, а в других длится годами. Например, резкий приток в клетку ионов кальция через P2X-каналы может привести к секреции последней других нейромедиаторов (что наблюдалось в тканях мозга),а высвобождение этих же ионов из внутриклеточных депо в результате активации P2Y может повлиять на активность генов, опосредующих пролиферацию клеток, и привести к изменениям в тканях, имеющим долговременные последствия.

Одновременно с нейромедиаторами из нервной клетки, генерирующей импульсы, высвобождаются молекулы АТФ (1), которые тоже переносят информацию. К секреции сигнальных АТФ способны и другие клетки. Оказавшись во внеклеточном пространстве, АТФ подвергают ся ферментативному расщеплению (2) с образованием сначала АДФ, затем АМФ и наконец аденозина. Сама молекула АТФ и все продукты ее расщепления переносят информацию от клетки к клетке, связываясь со специфическими рецепторами на их поверхности (3). Известны два типа АТФ-рецепторов: Р2Х и Р2У. Последний распознают также молекулы АДФ. АМФ и аденозин связываются с Р1-рецепторами. Продукты расщепления АТФ могут ослаблять или усиливать его действие; например, аденозин, связываясь с Р1рецептором клетки-источника АТФ,


способен подавлять его высвобождение


Механизм действия АТФ как сигнальной молекулы представляется еще более сложным, когда в дело вступают другие внеклеточные системы сигнализации. Известно, например, что обширное семейство ферментов под названием экто-АТФазы, находящихся на поверхности большинства клеток, быстро отщепляют от молекулы АТФ фосфатные группы, превращая АТФ сначала в аденозиндифосфат (АДФ), затем в аденозинмонофосфат (АМФ), и наконец в аденозин. Каждый из продуктов расщепления АТФ может действовать на клетку по-своему.

Фусао Като (Fusao Kato) из Медицинской школы Университета Дзикеи в Токио показал, например, что АТФ совместно с аденозином участвует в работе нейронных сетей ствола головного мозга, опосредуя такие важные физиологические функции, как дыхание, сокращение сердечной мышцы и работу желудочно-кишечного тракта. Известны и прямо противоположные ситуации, когда АТФ и аденозин выступают как антагонисты при передаче сигналов: сигнал один – переносчиков много.

Впервые способность АТФ к переносу информации была продемонстрирована для нервных клеток и мышц. Но теперь мы знаем, что АТФ играет аналогичную роль в самых разных тканях. На примере сердечно-сосудистой системы мы покажем, насколько разнообразны по своей природе и длительности механизмы действия АТФ от одного нейрона другому аденозин может подавлять высвобождение АТФ в синаптическую щель одним из нейронов. Таким образом, взаимное влияние эффектов АТФ, его составляющих и внеклеточных экто-АТФаз можно рассматривать как основу саморегулирующейся сигнальной сети.

Совместное влияние на клетку оказывают не только АТФ и продукты его расщепления; в нервной системе у АТФ есть и другие партнеры, в отношении которых он действует как конейромедиатор. Такое явление, обнаруженное Бернстоком еще в 1976 г., помогло опровергнуть устоявшееся мнение, что любой нейрон синтезирует, запасает и вы- ВИДЫ РЕЦЕПТОРОВ Известны два вида рецепторов АТФ. Ре- цепторы Р2Х — это кальциевые и натри евые ионные каналы, открывающиеся в ответ на связывание АТФ с их внекле точной частью. Когда молекула АТФ при соединяется к рецептору Р2Ү, запускает ся каскад внутриклеточных сигнальных процессов, в результате чего ионы каль ция высвобождаются из внутриклеточ ных депо в цитоплазму. В обоих случаях повышение концентрации ионов кальция в клетке может привести в частности к кратковременному сокращению мышц. Активация Р2Ү может инициировать раз ного рода межмолекулярные взаимо действия и изменение генной активности, что вызывает долговременные эффекты, например клеточную пролиферацию свобождает всего один тип нейромедиаторов. Накоплено множество свидетельств в пользу того, что АТР обычно высвобождается совместно с такими нейромедиаторами, как всем известные норадреналин и ацетилхолин. Впервые концепция конейромедиатора была выдвинута относительно АТФ. Сегодня известны и другие примеры подобного партнерства: ГАМК и глицин, дофамин и серотонин, ацетилхолин и глутамат. Мы имеем здесь еще один пример того, как исследование сигнальных функций АТФ по могло выявить более универсальные физиологические закономерности и наметить новые направления развития других областей. Увеличение тока крови вызывает сдвиг эндотелиальных клеток, выстилающих стенки кровеносного сосуда; в резуль тате из клеток высвобождаются молекулы АТФ, которые активируют рецепторы ближайших клеток. В ответ они секретируют оксид азота, который способствует расширению сосуда.

Роль АТФ в поддержании нормы и борьбе с патологиями.

АТФ принимает участие в функционировании всех пяти органов чувст. Так, показано, что рецепторы АТФ на поверхности нервных клеток в сетчатке глаза реагируют на информацию, поступающую от палочек и колбочек (клеток, воспринимающих световые сигналы). В свою очередь, нервные клетки сетчатки используют АТФ и ацетилхолин в качестве конейромедиаторов для передачи информации в центры головного мозга, отвечающие за ее обработку. Помимо повседневной работы АТФ, по данным нескольких групп ученых, участвует как сигнальная молекула в очень важном акте в процессе развития эмбриона — формировании зрительной системы.

Николас Дейл (Nicholas Dale) из Уорикского университета в Англии вместе со своими коллегами показал, что высвобождение АТФ в строго определенный момент развития эмбриона действительно служит сигналом к началу формирования глаза. Такую же роль он играет в развитии улитки внутреннего уха — структуры, ответственной за восприятие звука. АТФ участвует в работе слухового аппарата и у взрослого человека. Полость улитки выстилают до 50 тыс. волосковых сенсорных клеток, и примерно половина из них имеют АТФ-рецепторы, которые, как было показано, в ряде случаев опосредуют импульсацию нейронов. Далее, вкусовые сосочки на кончике языка несут Р2Х-рецепторы, опосредующие вкусовые ощущения. Сью Киннамон (Sue C. Kinnamon) и ее коллеги из Университета штата Колорадо в ходе хорошо продуманных и организованных экспериментов продемонстрировали, что АТФ представляет собой жизненно важный нейромедиатор, передающий сигналы от вкусовых сосочков соответствующим нервным клеткам, и что мыши, лишенные $P2X_2$ - и $P2X^3$ -рецепторов, не способны к восприятию вкуca.

Интересно, что такие же рецепторы опосредуют некоторые болевые ощущения. Многие знают не понаслышке, что подкожные инъекции АТФ весьма болезненны. Недавно группа физиологов из Школы медицины, стоматологии и биомедицинских наук при Королевском колледже в Лондоне пока-

зала, что боль возникает в результате активации Р2Х-рецепторов в нервных окончаниях в коже, опосредующих тактильные и болевые ощущения. Связь АТФ с другим видом боли, а именно возникающей при повреждении нервов, имеет иной характер. Эксперименты, проведенные Кадзухиде Иноуе (Kazuhide Inoue) из Университета Кюсю в Японии и Майклом Салтером (Michael Salter) из Университета Торонто свидетельствуют, что в этом случае происходит активация АТФ-рецепторов на поверхности клеток микроглии в спинном мозге. Микроглия в свою очередь секретирует молекулы, которые раздражают нервные волокна, что и вызывает хроническую боль (см.: Филдс Д. Новые подозреваемые по делу о хронической боли //ВМН, № 1, 2010).

Уже сейчас некоторые фармацевтические компании намереваются использовать Р2Х-рецепторы в качестве мишеней для новых лекарственных средств при неврологических болях и болях, сопровождающих воспаление. И это только одна из возможных областей применения АТФ или их рецепторов в медицинских целях. В том же ряду находятся сердечно-сосудистые заболевания. Чтобы понять причину, нужно проследить, что происходит при таких патологиях. Клетки, получившие физические повреждения или неправильно функционирующие, могут высвобождать АТФ в межклеточную среду. Часто это служит сигналом для организма к включению механизмов репарации, в частности к выработке в повышенных количествах тромбоцитов и образованию сгустков крови, останавливающих кровотечение. У тромбоцитов имеются рецепторы подтипа Р2Ү12; их активация внеклеточными молекулами АТФ и вызывает такие изменения в клетках, которые ускоряют образование сгустков. Эти же события лежат в основе возникновения тромбов в кровеносных сосудах, что может привести к инфаркту или инсульту. Уже создано лекарство-«блокбастер» под названием клопидогрел, которое блокирует рецепторы P2Y12.

ΑΤΦ

В качестве нейромедиатора АТФ непосредственно участвуют в функционировании головного мозга и сенсорных рецепторов, а также в регуляции работы мышц и других органов и тканей. Высвобождаясь из клеток, не относящихся к нервной системе, АТФ часто служит «спусковым крючком» для защитных реакций. Ниже приведены некоторые примеры действия АТФ на различные органы и ткани. В одних случаях эти функции уже установлены, в других изучаются.

МОЗГ. АТФ опосредует связь между нейронами, а также между нейронами и клетками глии. Информация, переносимая этими молекулами и продуктом их расщепления аденозином, влияет на сон, память, обучаемость, двигательную активность. А если сигнал слишком сильный, может развиться эпилепсия или другие психические расстройства. АТФ способствует заживлению ран, но в то же время может запускать процесс апоптоза при нейродегенеративных заболеваниях.

СЕНСОРНЫЕ ОРГАНЫ И БОЛЕВЫЕ ОЩУЩЕНИЯ. АТФ регулирует, а в некоторых случаях переносит информацию от сенсорных нервов глаз,

ушей, носа и языка в головной мозг. Участвует в передаче в головной мозг болевых стимулов.

СЕРДЦЕ. Молекулы АТФ, высвобождаемые вместе с норадреналином нервны ми клетками вегетативной нервной системы, стимулируют сокращения сердечной мышцы. Нарушения в работе этой сигнальной системы вызывают аритмию и изменение артериального давления.

ДРУГИЕ ОРГАНЫ. АТФ, высвобождаемый нервными клетками кишечника, способствует сокращению его стенок и секреции пищеварительных ферментов. АТФ участвует также в регуляции эрекции, сокращений стенок мочевого пузыря.

КОСТНАЯ ТКАНЬ. Активация АТФ-рецепторов стимулирует процессы восстановления костной ткани и подавляет процессы ее разрушения.

КОЖА. Активация АТФ-рецепторов способствует заживлению ран, а также, возможно, участвует в нормализации процессов клеточной пролиферации при таких заболеваниях, как псориаз и склеродермия.

ИММУННАЯ СИСТЕМА. Молекулы АТФ, выходящие из клеток при повреждениях тканей, стимулируют клетки иммунной системы к запуску воспаления — защитной реакции организма. Однако слишком сильное и длительное воспаление может привести к нежелательным последствиям, например ревматоидному артриту. АТФ в качестве переносчика информации помогает клеткам иммунной системы уничтожать клетки, инфицированные патогенными бактериями, предотвращает стимулирующее действие АТФ, а несколько сходных препаратов проходят последние стадии клинических испытаний. Еще одно поле деятельности для терапии, нацеленной на АТФ, — пищеварительная система. Джеймс Галлиган (James J. Galligan) и другие сотрудники Университета штата Мичиган показали, что АТФ, высвобождаемый из нервных клеток кишечника, связывается с Р2Х- и Р2У-рецепторами стенок и участвует в регуляции их ритмичных сокращений, проталкивающих пищу по кишечному тракту. Одновременно молекулы АТФ, связывающиеся с Р2У-рецепторами на поверхности клеток, которые выстилают полость кишечника, усиливают секрецию пищеварительных ферментов. Вещества, действующие на эти рецепторы и влияющие на указанные процессы, представляют большой интерес для фармацевтических компаний как возможные кандидаты на роль лекарственных средств, направленных на устранение синдрома раздраженной толстой кишки и еще более серьезной патологии — болезни Крона.

Тот факт, что АТФ участвует в поддержании нормальной работы множества органов и тканей, предполагает возможность его применения для лечения целого ряда расстройств: болезней почек, костей, мочевого пузыря, кожи, неврологических и психических патологий. И что еще более важно — АТФ, возможно, является одним из естественных защитников организма от онкологических заболеваний. Еще в 1983 г. Элиезер Рапопорт (Eliezer Rapoport), работавший тогда в Медицинской школе Бостонского университета, сообщил о способности АТФ уничтожать раковые клетки. Новость была воспринята с большим скептицизмом, но с тех пор сразу несколько лабора-

торий независимо друг от друга показали, что АТФ действительно подавляет рост опухолей, в частности предстательной железы, молочных желез, прямой кишки, яичников, пищевода,а также останавливает развитие меланомы. Сигнальная система с участием АТФ, с одной стороны, вызывает апоптоз раковых клеток, а с другой — способствует дифференциации клеток, и все вместе это замедляет рост опухоли.

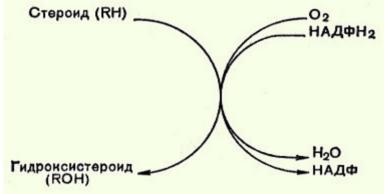
Для того чтобы новые сведения о функциях АТФ нашли практическое применение — имеется в виду создание лекарственных препаратов, готовых к употреблению, — придется проделать огромную работу. Но уже сейчас многие научно-исследовательские лаборатории и фармацевтические компании активно занимаются поисками веществ, которые избирательно влияли бы на определенные подтипы рецепторов АТФ или блокировали расщепление АТФ после его высвобождения из клеток.

АТФ – вездесущь

Участие АТФ в работе самых разных сигнальных систем ставит перед исследователями по крайней мере одну серьезную проблему: создание лекарственных средств, нацеленных на единственный орган или ткань. Возможно, решить ее поможет разнообразие субъединичных конфигураций АТФрецепторов у разных видов клеток и тканей. Балджит Как пытается сейчас сконструировать искусственные АТФ-рецепторы, которые можно было бы встроить в клеточные мембраны in vitro или даже в клетки лабораторных животных. Это позволит выявить последствия минимальных изменений функций рецепторов. Есть и другие подходы к направленному изменению функционирования АТФ как сигнальной молекулы и изучению его последствий на уровне организма.

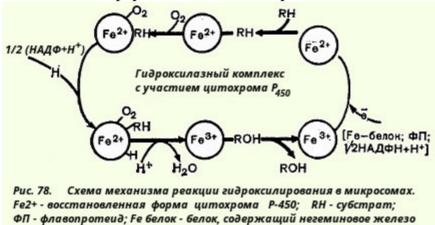
Одно из недавних достижений последних 20 лет в той области исследований, о которой идет речь, — определение Эриком Гуоксом (Eric Gouaux) из Орегонского университета кристаллической структуры Р2Х-канала у рыбки данио рерио. Теперь мы можем проследить за работой данного рецептора на атомном уровне и понять, как осуществляется АТФ-сигнализация от момента связывания молекулы с рецептором до момента получения сигнала целой физиологической системой. Это поможет также в поиске новых лекарственных средств целевого действия.

Недавно АТФ-рецепторы были обнаружены у растений и таких простейших организмов, как сине-зеленые водоросли, амебы и шистосомы, что открывает новые возможности в борьбе с заболеваниями растений и даже найдет применение в сельском хозяйстве. Наличие систем АТФ-сигнализации у разных форм жизни, далеко отстоящих друг от друга по уровню сложности, наводит на мысль, что коммуникативная функция появилась у АТФ так же давно, как и способность запасать энергию.


Мы с удовлетворением наблюдаем за тем, как изменяется отношение к сигнальной роли АТФ. 50 лет назад сама эта идея считалась несерьезной, а сегодня к АТФ проявляет интерес все биологическое сообщество. Мы уверены, что когда-нибудь возможности АТФ раскроются в полной мере и послужат улучшению качества жизни людей.

Микросомальное окисление и биологические функции кислорода в этом процессе.

Микросомы - морфологически замкнутые везикулы, в которые превращается эндоплазматический ретикулум при гомогенизацип тканей. Следовательно, микросомную фракцию, выделяемую при дифференциальном центрифугировании гомогенатов, образуют преимущественно мембраны эндоплазматического ретикулума и некоторые другие субклеточные структуры (например, рибосомы).


Микросомальное окисление осуществляется ферментными системами, локализованными преимущественно в микросомной фракции таких органов, как печень и надпочечники, в мембранах гладкого эндоплазматического ретикулума (ЭПР). Ферменты, катализирующие восстановление одного атома молекулы O_2 с образованием воды и включение другого атома кислорода в окисляемое вещество, получили название микросомальных оксидаз со смешанной функцией или микросомальных монооксигеназ. Окисление с участием монооксигеназ обычно изучают, используя препараты микросом. В отличие от митохондриального окисления, где ведущую роль, как было показано выше, играют реакции дегидрирования, а кислород является конечным акцептором электронов и используется лишь для образования воды, в процессах микросомального окисления активированный кислород непосредственно внедряется в окисляемое вещество. При этом функциональная роль митохондриального и микросомального окисления в клетке различна. Митохондриальное окисление - механизм использования кислорода в биоэнергетических процессах. Микросомальное окисление - механизм использования кислорода с "пластическими" целями.

Ферментные системы, локализованные в микросомной фракции и способные использовать молекулярный кислород для окисления специфических органических соединений, делятся на оксигеназы, присоединяющие оба атома кислорода ($A + O_2 --> AO_2$), и гидроксилазы, присоединяющие к субстрату только один из двух атомов O_2 ($A + O_2 --> AOH + [O]$). Второй атом кислорода используется обычно на окисление НАДФН₂. Например:

Микросомальная цепь ферментов, осуществляющая гидроксилирование, в значительной мере изучена. Она содержит цитохром P-450, восстановленный СО-комплекс которого имеет максимум поглощения при длине волны 450 нм, специфический флавопротеид, включающий ФАД, и Fe-белок, содержащий негеминовое железо. Следует заметить, что флавопротеиды и

цитохромы, которые функционируют в микросомальной цепи окисления, резко отличаются от ферментов митохондриальной дыхательной цепи.

На рис. 78 в общей форме представлена цепь переноса электронов в микросомах, при участии которой осуществляется гидроксилирование. Как видно из этого рисунка, имеются две точки цепи, где участвует НАДФН₂: первый раз он поставляет атом водорода и протон для образования воды, второй - отдает электрон для восстановления цитохрома P-450 (в переносе электрона на цитохром участвуют флавопротеид и белок, содержащий негеминовое железо). Считается, что цитохром P-450 выполняет двоякую функцию. Во-первых, он связывает субстрат гидроксилирования, во-вторых, на нем происходит активация молекулярного кислорода.

К числу эндогенных субстратов микросомального окисления следует отнести стероидные гормоны и холестерин, а также, по-видимому, ненасыщенные жирные кислоты. В последнее время появились указания на возможную роль реакций микросомальмого окисления в биосинтезе простагландинов. Велико значение микросомального окисления в метаболизме лекарственных средств и ряда токсических соединений.

1. Основные ферменты микросомальных электронтранспортных цепей

Микросомальная система не содержит растворимых в цитозоле белковых компонентов, все ферменты - мембранные белки, активные центры которых локализованы на цитоплазматической поверхности ЭР. Система включает несколько белков, составляющих электронтранспортные цепи (ЦПЭ). В ЭР существуют две такие цепи, первая состоит из двух ферментов - NADPH- P_{450} редуктазы и цитохрома P_{450} , вторая включает фермент NADH-цитохром- b_5 редуктазу, цитохром b_5 и ещё один фермент - стеароил-КоА-десатуразу.

Электронтранспортная цепь - NADPH- P_{450} редуктаза - цитохром P_{450} . В большинстве случаев донором электронов (е) для этой цепи служит NADPH, окисляемый NADPH- P_{450} редуктазой. Фермент в качестве простетической группы содержит 2 кофермента - флавинаденинди-нуклеотид (FAD) и флавинмононуклеотид (FMN). Протоны и электроны с NADPH переходят последовательно на коферменты NADPH- P_{450} редуктазы. Восстановленный FMN (FMNH₂) окисляется цитохромом P_{450} (см. схему ниже).

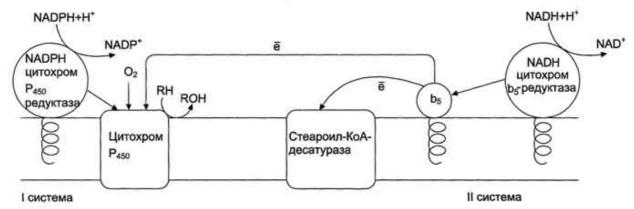
Цитохром P_{450} - гемопротеин, содержит простетическую группу гем и имеет участки связывания для кислорода и субстрата (ксенобиотика). Название цитохром P_{450} указывает на то, что максимум поглощения комплекса цитохрома P_{450} лежит в области 450 нм.

NADPH+H⁺ FAD FMNH₂ Fe³⁺ (P₄₅₀)
$$O^{2-} + 2H^{+} \rightarrow H_2O$$
NADP⁺ FADH₂ FMN Fe²⁺ (P₄₅₀) O ROH
RH

NADH+H⁺ FAD Fe³⁺ (b₅) Fe³⁺ (P₄₅₀) $O^{2-} + 2H^{+} \rightarrow H_2O$
NAD⁺ FADH₂ Fe²⁺ (b₅) Fe²⁺ (P₄₅₀) O ROH
RH

Окисляемый субстрат (донор электронов) для NADH-цитохром b_5 - редуктазы - NADH (см. схему выше). Протоны и электроны с NADH переходят на кофермент редуктазы FAD, следующим акцептором электронов служит Fe³⁺ цитохрома b_5 . Цитохром b_5 в некоторых случаях может быть донором электронов (е) для цитохрома P_{450} или для стеароил-КоA-десатуразы, которая катализирует образование двойных связей в жирных кислотах, перенося электроны на кислород с образованием воды (рис. 12-2).

NADH-цитохром b_5 **редуктаза** - двухдоменный белок. Глобулярный цитозольный домен связывает простетическую группу - кофермент FAD, а единственный гидрофобный "хвост" закрепляет белок в мембране.


Цитохром \mathbf{b}_{5} - гемсодержащий белок, который имеет домен, локализованный на поверхности мембраны ЭР, и короткий "заякоренный" в липидном бислое спирализованный домен.

NADH-цитохром b_5 -редуктаза и цитохром b_5 , являясь "заякоренными" белками, не фиксированы строго на определённых участках мембраны ЭР и поэтому могут менять свою локализацию.

2. Функционирование цитохрома Р₄₅₀

Известно, что молекулярный кислород в триплетном состоянии инертен и не способен взаимодействовать с органическими соединениями. Чтобы сделать кислород реакционно-способным, необходимо его превратить в синглетный, используя ферментные системы его восстановления. К числу таковых принадлежит моноксигеназная сисгема, содержащая цитохром P_{450} . Связывание в активном центре цитохрома P_{450} липофильного вещества RH и молекулы кислорода повышает окислительную активность фермента.

Цитоплазма

Рис. 1. Электронтранспортные цепи ЭР. RH - субстрат цитохрома P_{450} ; стрелками показаны реакции переноса электронов. В одной системе NADPH окисляется NADPH цитохром P_{450} -редуктазой, которая затем передаёт электроны на целое семейство цитохромов P_{450} . Вторая сисгема включает в себя окисление NADH цитохром b_5 -редуктазой, электроны переходят на цитохром b_5 ; восстановленную форму цитохрома b_5 окисляет стеароил-КоАдесатураза, которая переносит электроны на O_2 .

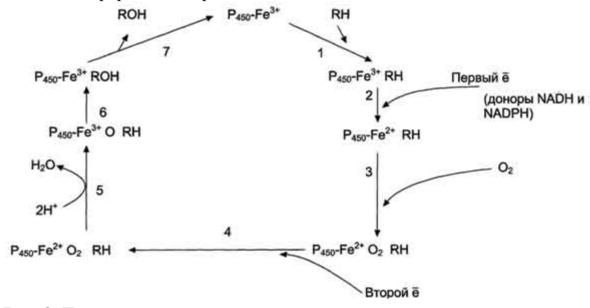
Один атом кислорода принимает 2 е и переходит в форму O^{2-} . Донором электронов служит NADPH, который окисляется NADPH-цитохром P_{450} редуктазой. O^{2-} взаимодействует с протонами: $O^{2-} + 2H^+ \rightarrow H_2O$, и образуется вода. Второй атом молекулы кислорода включается в субстрат RH, образуя гидроксильную группу вещества R-OH (рис. 2).

Суммарное уравнение реакции гидроксилирования вещества RH ферментами микросомального окисления:

$$RH + O_2 + NADPH + H^+ \rightarrow ROH + H_2O + NADP^+$$
.

Субстратами P_{450} могут быть многие гидрофобные вещества как экзогенного (лекарственные препараты, ксенобиотики), так и эндогенного (стероиды, жирные кислоты и др.) происхождения.

Таким образом, в результате первой фазы обезвреживания с участием цитохрома P_{450} происходит модификация веществ с образованием функциональных групп, повышающих растворимость гидрофобного соединения. В результате модификации возможна потеря молекулой её биологической активности или даже формирование более активного соединения, чем вещество, из которого оно образовалось.


3. Свойства системы микросомальногоокисления

Важнейшие свойства ферментов микросомального окисления: широкая субстратная специфичность, которая позволяет обезвреживать самые разнообразные по строению вещества, и регуляция активности по механизму индукции.

Широкая субстратная специфичность. Изоформы Р₄₅₀

K настоящему времени описано около 150 генов цитохрома P_{450} , кодирующих различные изоформы фермента. Каждая из изоформ P_{450} имеет много субстратов. Этими субстратами могут быть как эндогенные липофильные вещества, модификация которых входит в путь нормального метаболизма

этих соединений, так и гидрофобные ксенобиотики, в том числе лекарства. Определённые изоформы цитохрома

Рис. 2. Транспорт электронов при монооксигеназном окислении с участием P₄₅₀. Связывание (1) в активном центре цитохрома P₄₅₀ вещества RH активирует восстановление железа в теме - присоединяется первый электрон (2). Изменение валентности железа увеличивает сродство комплекса P_{450} - Fe^{2+} ·RH к молекуле кислорода (3). Появление в центре связывания цитохрома P_{450} молекулы O_2 ускоряет присоединение второго электрона и образование комплекса P_{450} - $Fe^{2+}O_2$ -RH (4). На следующем этапе (5) Fe^{2+} окисляется, второй электрон присоединяется к молекуле кислорода P_{450} - $Fe^{3+}O_2$ -. Восстановленный атом кислорода (O^{2-}) связывает 2 протона, и образуется 1 молекула воды. Второй атом кислорода идёт на построение OH-группы (6). Модифицированное вещество R-OH отделяется от фермента (7).

 P_{450} участвуют в метаболизме низкомолекулярных соединений, таких как этанол и ацетон.

Регуляция активности микросомальной системы окисления

Регуляция активности микросомальной системы осуществляется на уровне транскрипции или посттранскрипционных изменений. Индукция синтеза позволяет увеличить количество ферментов в ответ на поступление или образование в организме веществ, выведение которых невозможно без участия системы микросомального окисления.

В настоящее время описано более 250 химических соединений, вызывающих индукцию микросомальных ферментов. К числу этих индукторов относят барбитураты, полициклические ароматические углеводороды, спирты, кетоны и некоторые стероиды. Несмотря на разнообразие химического строения, все индукторы имеют ряд общих признаков; их относят к числу липофильных соединений, и они служат субстратами для цитохрома P_{450} .

Общие пути катаболизма.

Общие пути катаболизма начинаются с пирувата, который превращается в молекулу ацетил-СоА под действием сложного мультифетментного пируватдегидрогеназного комплекса в митохондриях. Затем молекула аце-

тил-СоА подвергается полному окислению в цикле трикарбоновых кислот, где из двууглеродного фрагмента уксусной кислоты извлекаются 8 электронов. Эти электроны в составе молекул НАДН и Φ АДН $_2$ вовлекаются в процесс окислительного фосфорилирования, где синтезируется АТ Φ и образуется H_2 О. К **общим путям катаболизма** относят: окислительное декарбоксилирование пировиноградной кислоты, цикл трикарбоновых кислот, окислительное фосфорилирование.

Окислительное декарбоксилирование пировиноградной кислоты Транспорт пирувата. Поступление пирувата в митохондрии (транспорт пирувата) обеспечивает специальная белковая транспортная система, локализованная во внутренней митохондриальной мембране. Пируват поступает в митохондрии из цитозоля совместно с протонами по механизму сопряженного транспорта. Движущей силой при этом является энергия протонного градиента.

Строение пируватдегидрогеназного комплекса. Пируватдегидрогеназ ный комплекс состоит из 512 субъединиц объединенных в сложный мультиферментный комплекс. В его состав (рис. 3) входят 3 фермента: пируватдегидрогеназа (Е1), дигидролипоамидацилтрансфераза (Е2) и дигидролипоамиддегидрогеназа (Е3), а также 5 коферментов : тиаминдифосфат (ТДФ), липоевая кислота (связанная через свою карбоксильную группу с є-аминогруппой лизина, входящего в состав фермента – дигидролипоамидацилтрансферазы, и далее называемая **липоамид**), ФАД, НАД⁺ и СоА. Три кофермента (ТДФ, липоамид и ФАД) ковалентно связаны в активных центрах ферментов Е1, Е2 и Е3 соответственно, а НАД⁺ и СоА выполняют роль вторых субстратов в химических реакциях (мигрирующие коферменты).

Особенностью ферментов и белков комплекса является то, что все ферменты и белковые компоненты мультиферментного комплекса кодируются в ядерной ДНК и синтезируются в цитозоле. После их поступления в митохондриальный матрикс (при этом затрачивается энергия АТФ и протонного градиента) они подвергаются финальному фолдингу с помощью митохондриальных шаперонов, приобретают функциональную активность и объединяются в мультиферментный комплекс.

Последовательность реакций в пируватдегидрогеназном комплексе. В этом комплексе происходит преобразование пирувата в ацетил-CoA, содержащий макроэргическую тиоэфирную связь и удаление из пирувата 2-х электронов в составе молекулы НАДН.

Значение декарбоксилирования пирувата для извлечения энергии из молекулы исключительно велико. Три углеродных атома пирувата имеют разную степень окисления. Углерод метильной группы (-**CH3**) имеет степень окисления -3 и, следовательно, в дальнейшем при его окислении до CO_2 (C^{+4}) можно получить 7 электронов. Углерод кето-группы (>**C=O**) окислен значительно (степень окисления +2) при его окислении до CO_2 можно извлечь 2 электрона. А углерод карбоксильной группы окислен почти полностью (+3). Поэтому карбоксильная группа это до некоторой степени балластная часть молекулы с позиции извлечения энергии, окисление этого углерода может

дать лишь 1 электрон. Удаление карбоксильной группы (т.е. реакцию декарбоксилирования) катализирует фермент пируватдегидрогеназа в активном центре которого локализован тиаминдифосфат – кофермент декарбоксилирования.

- 1. В активном центре фермента происходит прямое взаимодействие двух атомов углерода с образованием между ними ковалентной связи. Это взаимодействие обусловлено разноименностью зарядов, которыми обладают углерод кето-группы пирувата с одной стороны и атом углерода тиазольногокольца тиаминпирофосфата с другой.
- 2. На этой стадии Е1 (пируватдегидрогеназа) переносит атом водорода и двухуглеродный ацетильный фрагмент (CH₃-CO-) на молекулу липоевой кислоты, локализованную в активном центре фермента Е2 (дигидролипоамидацетилтрансферазы). При этом в активном центре фермента образуется ацетилтиоэфир липоамида, а восстановление при этом липоамида способствует извлечению еще 1 электрона (от 2-го углеродного атома пирувата.
- 3. В этой реакции CoA-SH атакует тиоэфирную связь в активном центре фермента E2, разрывает еè и присоединяет к себе двухуглеродный ацетильный фрагмент (CH₃-CO-). Происходит образование ацетил~CoA, который покидает активный центр фермента E2 (дигидролипоамидацетилтрансферазы). При этом оба атома серы липоевой кислоты полностью восстановлены.
- 4. В этой реакции фермент Е3 (дигидролипоамиддегидрогеназа) катализирует перенос двух атомов водорода с восстановленного липоамида, находящегося в активном центре фермента Е2 на кофермент ФАД, локализованный в своем активном центре. При этом в активном центре фермента Е3 образуется Φ AД H_2 .
- 5. В активный центр дегидрогеназы (Е3) пируватдегидрогеназного комплекса входит $HAД^+$ и присоединяет к себе 2 электрона и протон от кофермента $\Phi AДH_2$ и в форме HAДH переносит их в процесс окислительного фосфорилирования.

Связь окислительного декарбоксилирования пирувата с процессом окислительного фосфорилирования.

При превращении пирувата в ацетил-СоА происходит образование НАДН, транспортирующего электроны в дыхательную цепь. Пара электронов в процессе окислительного фосфорилирования может участвовать в синтезе АТФ с образованием до 2,5 моль АТФ на 2 моль электронов. Усиление распада АТФ в клетке ведет к повышению концентрации АДФ и ускорению окисления НАДН в дыхательной цепи. Повышение концентрации НАД⁺, в свою очередь, стимулирует окислительное декарбоксилирование пирувата. Напротив, повышение концентрации АТФ и НАДН снижает скорость этого процесса.

Таким образом, изменения отношений АДФ/АТФ и НАДН/НАД⁺ - важнейшие внутриклеточные регуляторные сигналы, отражающие энергети ческие потребности клетки и регулирующие скорость окислительного декар боксилирования пирувата. Каталитическая активность пируватдегидроге

назного комплекса снижается, когда в клетках имеется достаточно – топлива в виде жирных кислот и ацетил~СоА.

Регуляция пируватдегидрогеназного комплекса (ПДК).

Регуляция пируватдегидрогеназного комплекса (ПДК) имеет важное значение для обеспечения цикла трикарбоновых кислот - топливными молекулами ацетил-СоА. Точная регуляция этого комплекса имеет важное значение в связи с невозможностью обратного преобразования ацетил-СоА в пируват, т.к. ферменты, необходимые для этого в организме человека отсутствуют.

Активность ПДК регулируется различными способами: доступностью субстратов, ингибированием продуктами реакции, аллостерическим путем, путем ковалентной модификации.

Активность пируватдегидрогеназного комплекса увеличивается при повышении концентрации АДФ, внутриклеточного кальция, под влиянием гормонов: инсулина и адреналина.

При повышении концентрации АДФ ПДК находится в нефосфорилированной активной форме. Этот эффект усиливается при повышении концентрации внутриклеточного кальция, который активирует фосфатазу ПДК. Такой механизм активации ПДК особенно важен в мышцах и жировой ткани. Активация ПДК происходит также под влиянием инсулина. Один из эффектов инсулина – повышение концентрации внутримитохондриального кальция, это приводит к активированию ПДК. В клетках миокарда ПДК активируется адреналином.

Регуляция активности пируватдегидрогеназного комплекса.

TC		
Ковалентная	Осуществляется фосфорилированием и дефосфорили-	
модификация:	рованием. В состав ПДК входят 2 регуляторных субъе-	
	диницы: киназа ПДК - фосфорилирует ферменты ком-	
	плекса и инактивирует ПДК; а фосфатаза - дефосфори-	
	лирует ферменты, превращая ферментативный ком-	
	плекс в активную форму.	
Ингибирование	Продукты пируватдегидрогеназной реакции аллосте-	
продуктами	рически активируют киназу ПДК. Активированная ки-	
реакции:	наза фосфорилирует и инактивирует ферменты ком-	
	плекса.	
	Таким образом, при накоплении НАДН и ацетил-СоА	
	тормозится превращение пирувата в ацетил-СоА. Так,	
	например, в печени при голодании:	
	- из жирового депо в печень поступают жирные кисло-	
	ты, из которых образуется ацетил-СоА;	
	- в присутствии высокомолекулярных жирных кислот	
	ингибирование ПДК усиливается. Пируват при этом не	
	окисляется и может быть использован для синтеза	
	глюкозы (в процессе глюконеогенеза).	

Аллостерический	Пируват аллостерически активирует нефосфорилиро-	
путь:	ванную форму ПДК, действуя согласно с другими суб-	
	стратами НАД+ и СоА.	

Гликолиз.

Гликолиз (от греч. glycys – сладкий и lysis – распад) – процесс окисления глюкозы, в результате которого происходит расщепление глюкозы с образованием 2 молекул пирувата (аэробный гликолиз) или 2 молекул лактата (анаэробный гликолиз). При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до CO_2 и H_2O . Если содержание кислорода недостаточно, как это может иметь место в активно сокращающейся мышце, пируват превращается в лактат. Гликолиз – один из центральных путей катаболизма глюкозы не только в животных и растительных клетках, но также у многих микроорганизмов. Биологическое значение гликолиза состоит в том, что это основной путь расщепления глюкозы до конечных продуктов CO_2 и H_2O . Именно этот путь поставляет клетке преобладающую долю $AT\Phi$ – до 60–70 % при обычном пищевом рационе человека. Все десять реакций гликолиза протекают в цитозоле клетки и характерны для всех органов и тканей.

При аэробных условиях пируват проникает в митохондрии, где полностью окисляется до ${\rm CO_2}$ и ${\rm H_2O}$. Если содержание кислорода недостаточно, как это может иметь место в активно сокращающейся мышце, пируват превращается в лактат. Энергетика аэробного распада глюкозы: 1 моль глюкозы -32 молекулы ${\rm AT}\Phi$

Подводя итог рассмотрению химизма процесса гликолиза, остановимся еще раз на его основных особенностях.

1. В гликолизе независимо от того, протекает он по анаэробному или аэробному пути, можно выделить два основных этапа. Реакции 1–5 составляют первый этап гликолиза, суть которого – превращение стабильной молекулы глюкозы в две молекулы более реакционноспособного фосфоглицеральдегида. На этом этапе гликолиза расходуются две молекулы АТФ.

Второй этап гликолиза включает реакции, приводящие к превращению фосфоглицеральдегида в пируват или лактат (соответственно реакции 6–10 или 6–11).

Эти реакции связаны с синтезом АТФ.

- 2. Большинство гликолитических реакций обратимо, за исключением трех (реакции 1, 3 и 10);
- 3. Все промежуточные соединения находятся в фосфорилированной форме. Источником фосфатной группы в реакциях фосфорилирования являются АТФ (реакции 1, 3) или H_3PO_4 (реакция 6);
- 4. Регенерация НАД+, необходимого для окисления новых молекул фосфоглицеральдегида, происходит при аэробном гликолизе посредством дыхательной цепи.

При этом водород транспортируется из цитозоля в митохондрии с помощью челночного механизма. При анаэробном гликолизе $HAД^+$ регенерируется в реакции восстановления пирувата в лактат, сопряженного с окислением $HAДH_2$.

5. Образование АТФ при гликолизе может идти двумя путями: либо субстратным фосфорилированием, когда для образования АТФ из АДФ и H_3PO_4 используется энергия макроэргической связи субстрата (реакции 7, 9), либо путем окислительного фосфорилирования за счет энергии переноса электронов и протонов в дыхательной цепи.

Конечный уровень знаний.

- 1. В процессе окисления изоцитрата до углекислого газа и воды электроны и протоны транспортируются переносчиками дыхательной цепи в следующей последовательности (расставьте компоненты в нужном порядке):
 - 1) Убихинон.
 - 2) Цитохромы а,а₃.
 - 3) Цитохром в.
 - 4) Цитохром с.
 - 5) Цитохром c_1 .
 - 6) ΦMH.
 - 7) НАДН₂.
 - 8) Кислород.
- 2. Перечислите 3 небелковых компонента 1-го комплекса дыхательной цепи.
 - 3. Небелковым компонентом цитохромов является ...
- 4. Для последовательного окисления сукцината до CO_2 и воды необходимы следующие участники дыхательной цепи
 - 1 ФМН 3-ФАД 5- цит.c₁ 7-цит.с 9-кислород
 - 2 KoQ 4-цитВ 6-цит.aa₃ 8-H-АТФ-за 10-сукцинат

(Выберите и расставьте компоненты в нужном порядке)

- 5. Укажите участки дыхательной цепи, транспортирующие:
- А протоны и электроны ...
- Б только электроны ...
- 6. Чему равен коэффициент Р/О при окислении малата в ниже приведенных условиях? (против каждого пункта поставьте соответствующую величину Р/О:
 - А без дополнительных добавок (полное сопряжение).....
 - Б при добавлении в среду инкубации ротенона с сукцинатом....
 - В при добавлении в среду инкубации протонофора (2,4-

динитрофенола)....

7. Характеризуйте процессы субстратного и окислительного фосфорилирования:

А- субстратное фосфорилирование:

1. образование АТФ сопряжено с переносом электронов по дыхательной цепи.

Б-окислительное фосфорилирование;

2. образование АТФ не требующее потребления кислорода.

В – оба процесса;

3. гидролиз субстратов.

 Γ – ни один из них.

4.синтез АТФ из АДФ и Н₃РО₄ с использованием энергии.

8. А. Выберите вещества, вызывающие торможение окисления α-кетоглутарата:

барбитураты

 $\mathbf{B} - \mathbf{H}\mathbf{A}\mathbf{Д}\mathbf{H}_2$;

 $\mathbf{\pi} - \mathbf{A} \mathbf{T} \Phi$;

(амитал);

 $\mathbf{6} - \mathbf{A} \mathbf{\Pi} \mathbf{\Phi}$;

 Γ - 2,4 – динит- $e - HAД^+$.

рофенол;

Б. Подберите к каждому из выбранных вами в пункте (А) веществ соответствующие механизмы действия:

- аллостерический ингибитор ЦТК. 1)
- 2) ингибитор 2-го комплекса дыхательной цепи.
- ингибитор 1-го комплекса дыхательной цепи. 3)
- разобщитель окислительного фосфорилирования. 4)

9. Распределите указанные ниже вещества по механизму их действия:

А – ингибиторы тканевого дыхания;

Б – разобщители окислительного фосфорилирования.

1) антимицин А;

5) 2,4-динитрофенол;

2) валиномицин;

6) тироксин;

3) барбитураты;

7) жирные кислоты;

4) оксалоацетат;

8) цианиды.

10. А. Выберите соединения, снижающие скорость тканевого дыхания:

- угарный газ; a)
- b) ротенон;
- 2,4-динитрофенол; c)
- малоновая кислота.

Б. Подберите к выбранным вами в пункте (А) соединениям соответствующий механизм действия:

1) разобщитель окислительного фосфорилирования;

- 2) 2-ингибитор НАДН-дегидрогеназы;
- 3) 3-ингибитор сукцинатдегидрогеназы;
- 4) 4-ингибитор цитохромоксидазы.

11. Какие кофакторы способны обратимо фиксировать два протона?

- ΦMH;
- 2) НАД;
- 3) ФАД;
- 4) железо в цитохромах.

12. Какие структуры <u>не входят</u> в состав комплексов дыхательной цепи:

- 1) цитохром в и цитохром с1
- 2) коэнзим Q и цитохром с;
- 3) цитохром в и цитохром с1;
- 4) сукцинатдегидрогеназа и НАДН-дегидрогеназа;

13. Выберите утверждения, правильно отражающие механизм окислительного фосфорилирования:

- 1) ферменты дыхательной цепи транспортируют протоны с наружной стороны внутренней мембраны митохондрий в матрикс;
- 2) энергия разности окислительно-восстановительных потенциалов трансформируется в энергию электрохимического потенциала;
 - 3) H⁺-АТФ-синтетеза создает электрохимический потенциал;
- 4) окислительно-восстановительный потенциал red/ox-системы характеризует количество выделяемой энергии;
- 5) процесс окислительного фосфорилирования возможен только в замкнутой мембране.

14. Окислительное фосфорилирование в дыхательной цепи митохондрий – это:

- 1) образование АТФ за счет энергии субстратов;
- 2) образование АТФ, не требующее расхода кислорода;
- 3) образование ATФ, сопряженное с переносом электронов по дыхательной цепи;
 - 4) окисление АТФ в дыхательной цепи;
 - 5) распад АТФ до АДФ и фосфорной кислоты.

15. Назвать последовательно ферменты, превращающие глюкозу в две триозы:

- 1) гексокиназа;
- 2) глюкозо-6-фосфатаза;
- 3) фосфофруктокиназа;
- 4) глюкозо-6-фосфат-изомераза;

- 5) енолаза;
- 6) альдолаза;
- 7) фруктозо-6-фосфатаза.

16. Указать последовательно этапы регуляции гликогенфосфорилазы (каскадный механизм):

- 1) фосфорилирование киназы гликогенфосфорилазы и ее активация;
- 2) образование гормоно-рецепторного комплекса;
- 3) адреналин;
- 4) синтез цАМФ;
- 5) образование из фосфорилазы А фосфорилазы В;
- 6) образование из фосфорилазы В фосфорилазы А;
- 7) образование активной протеинкиназы;
- 8) активация аденилатциклазы.

17. Назвать последовательно ферменты, превращающие 3-фосфоглицериновый альдегид в молочную кислоту:

- 1) енолаза;
- 2) фосфоглицераткиназа;
- 3) пируваткиназа;
- 4) глицеральдегидфосфатдегидрогеназа;
- 5) фосфоглицеромутаза;
- 6) лактатдегидрогеназа.

18.Указать последовательно этапы регуляции гликогенсинтазы под действием адреналина:

- 1) синтез цАМФ;
- 2) образование гормоно-рецепторного комплекса,
- 3) фосфорилирование гликогенсинтазы;
- 4) снижение активности гликогенсинтазы;
- 5) адреналин;
- 6) активация протеинкиназы;
- 7) активация аденилатциклазы;
- 8) повышение активности гликогенсинтазы.

19. Сравните энергетический эффект окисления до CO_2 и воды в аэробных условиях:

А-молекулы глюкозы; 2 молекулы АТФ. 1) 6 молекул АТФ. 2) 20 молекул АТФ. 3) 38 молекул АТФ. 4) 40 молекул АТФ. В- гликозильного остатка гликогена. 5) 39 молекул АТФ. 6) 7) 12 молекул АТФ.

20. Функции углеводов в организме человека:

- 1) энергетическая;
- 2) пластическая;
- 3) каталитическая;
- 4) транспортная;
- 5) резерв энергетического материала;
- 6) хранение генетической информации.

ТЕМА: БИОХИМИЧЕСКИЕ АНАЛИЗЫ В КЛИНИЧЕСКОЙ МЕДИЦИНЕ. МЕТОДЫ БИОХИМИИ.

Основные вопросы темы.

- 1) Место клинической биохимии среди других прикладных клинических дисциплин
- 2) Применение биохимических анализов (скрининг, мониторинг, диагноз, прогноз)
 - 3) Отбор образцов для анализов (запрос на анализ)
- 4) Понятие о биохимических стандартах и контроле качества биохимического материала
- 5) Лабораторные методы оценки белкового обмена (азотометрические, гравиметрические, «преципитационные», спектрофотометрические, рефрактометрические, колориметрические)
 - 6) Лабораторные методы оценки ферментативного обмена
 - 7) Лабораторные методы оценки пигментного обмена
 - 8) Лабораторные методы оценки углеводного обмена
 - 9) Методы определения показателей липидного обмена
 - 10) Лабораторные методы оценки кислотно-основного состояния

Актуальность темы.

Клиническая биохимия клинико-диагностическая которая занимается разработкой и использованием стандартных методов диагностики, а также осуществляет контроль за течением заболеваний с позиций биохимии. Клиническая биохимия является важнейшим разделом лабораторной диагностики, наряду с клинической лабораторной гематологией, иммунологией, клинической серологией и микробиологией, клинической токсикологией и др. Данная дисциплина располагает специфическим набором аналитического оборудования, использует диагностических методов позволяет врачу-клиницисту множество И оценить диагностически и прогностически значимые нарушения биохимических процессов в организме человека. Эта область лабораторной диагностики достаточно бурно развивается. Современная клиническая позволяет существенно облегчить квалифицированную обоснованную постановку диагноза, выбор лечения и оценку прогноза при многих заболеваниях.

Клинико-биохимические исследования выполняются практически всем пациентам. Их применяют главным образом для подтверждения или уточнения диагноза, характеристики формы, тяжести течения и определения прогноза болезни, выбора этиологической и патогенетической терапии, контроля за результатами лечения, а также для обнаружения патологии при скрининговых исследованиях.

В зависимости от клинических задач биохимические исследования могут производиться однократно и многократно (в динамике), а также в процессе проведения функциональных или фармакологических тестов

со стимуляцией или торможением этапов исследуемого обмена веществ, клеточных или гуморальных реакций либо других функций, выраженность или качество которых отражается в параметрах определяемого лабораторного показателя.

Биохимические технологии регулярно обогащаются новыми методами исследований. Повышение их чувствительности и специфичности способствует расширению объектов биохимического анализа. Помимо традиционного анализа сыворотки крови и мочи все шире в диагностических целях используется конденсат выдыхаемого воздуха, выпотная, слезная жидкость, ликвор, клеточные элементы и др. Широкое внедрение биохимических анализаторов позволяет проводить комплексный анализ с использованием все меньшего объема биологической пробы.

Преаналитический этап биохимических исследований.

Забор биологического материала для выполнения биохимического лабораторного исследования осуществляется до проведения лечебнодиагностических мероприятий или после него, временной промежуток определяется индивидуально.

В случае проведения забора биологического материала у пациентов, подвергнутых хирургическим и другим вмешательствам, для выполнения биохимического лабораторного исследования необходимо учитывать следующие обстоятельства:

- в послеоперационном периоде, в зависимости от его объема и характера, а также вследствие остаточного влияния самого патологического процесса, изменения различных показателей жизнедеятельности организма могут сохраняться от нескольких дней до трех недель;
- после инфузии внутривенных водных растворов веществ забор образца крови у пациента должен быть отсрочен не менее чем на 1 час;
 - после инфузии жировой эмульсии не менее, чем на 8 часов.

Существенное влияние на результаты юиохимического исследования биологического материала оказывают условия периода, предшествующего забору у пациента образца биологического материала. С этой целью в обязательном порядке учитываются следующие факторы:

- лечебно-диагностические процедуры, проводимые пациенту (инъекции, инфузии, трансфузии, введение рентгеноконтрастных средств, иммуносцинтиграфия, диализ, эндоскопическое исследование, оперативные вмешательства, физиопроцедуры, методы функциональной диагностики);
 - воздействие ионизирующего излучения в анамнезе пациента;
- назначение пациенту лечебного питания с учетом тяжести состояния и наличия хронического заболевания.

В случае проведения забора биологического материала у пациента, по лучающего лекарственные средства с учетом имеющегося заболевания, врач специалист, оказывающий медицинскую помощь пациенту, обязан отменить за 2-3 суток лекарственные средства, назначенные пациенту и способные по влиять на результаты лабораторного исследования, если отмена лекарствен

ного средства не ухудшит состояние пациента. При невозможности отмены пациенту лекарственных средств, используемых в процессе оказания медицинской помощи, при интерпретации лабораторных исследовании необходимо учитывать их влияние на достоверность полученных результатов. При этом забор образца крови должен быть произведен до приема очередной дозы лекарственных средств.

В бланке-направлении, сопровождающем доставку биологического материала в клинико-диагностическую лабораторию, в обязательном порядке указываются лекарственные средства, принимаемые пациентом, которые могут повлиять на результаты исследований.

Забор крови у пациента, которому произведено внутривенное введение лекарственного средства, проводится после завершения фазы его распределения, через 1–2 часа, с обязательным указанием в бланке-направлении на биохимическое лабораторное исследование времени после приема последней дозы лекарственного средства. В случае внутривенного введения лекарственных средств из группы сердечных гликозидов, забор крови проводится через 6-8 часов после него.

Если нет специальных указаний, для плановых биохимических исследований кровь забирают из вены утром (между 7 и 9 часами) натощак (через 8-12 часов после последнего приема пищи). В случае проведения клинических лабораторных исследований крови в иное время суток, в бланкенаправлении указывается период времени, прошедший после последнего прима пищи (после еды в крови повышается содержание глюкозы, холестерина, триглицеридов, железа, неорганических фосфатов, аминокислот). Во внимание должны приниматься колебания содержания ряда аналогов аналитов в организме пациента в течение суток.

Суточные колебания значений концентрации некоторых аналитов.

Аналиты	Максимум содержания	Минимум со- держания	Диапазон колебаний (% от среднеустойчивой ве-
	(время суток,	(время суток,	личины)
	часы)	часы)	
АКТГ	6-100	0-4	150-200%
Альдостерон	2-4	12-14	60-80%
Гемоглобин	6-18	22-24	8-15%
Железо	14-18	2-4	50-70%
Калий	14-16	23-1	5-10%
Кортизол	5-8	21-3	18-200%
Пролактин	5-7	10-12	80-100%
Ренин	0-6	10-12	120-140%
Соматотропин	21-23	1-21	300-400%
T_4	8-12	23-3	10-20%
Тестостерон	2-4	20-24	30-50%
ТСГ	20-2	7-13	5-15%
Фосфор неор-	2-4	8-12	60-80%

ганический			
Эозинофилы	4-6	18-20	30-40%

Биохимические лабораторные тесты.

Биохимические лабораторные исследования широко используются в клинической практике в тех случаях, когда в основе заболевания лежат мета-болические нарушения (например, сахарный диабет), повреждения тканей (например, инфаркт миокарда), воспалительные процессы (например, ревматические заболевания) или нарушения функций органов и тканей (например, почечная недостаточность). В практической медицине биохимические тесты используются для решения следующих задач:

- 1. скрининга выявления болезни на доклинической стадии;
- 2. диагностики подтверждения или исключения диагноза;
- 3. прогноза определения величины риска развития заболевания, особенностей течения заболевания и его исхода;
- 4. мониторинга наблюдения за течением заболевания или реакцией на лечение.

Биохимический анализ крови предполагает исследование различных химических аналитов – белков, липидов, углеводов, различных продуктов их превращений, активности ферментов индивидуальных белков и др, имеющих клиническое значение.

Материал для исследования: сыворотка венозной крови.

Взятие крови производится натощак из локтевой вены в специальную вакуумную систему активатором свертывания.

Виды пробирок для взятия крови:

- Вакуумная система (белая/красная крышка) с активатором свертывания;
- Вакуумная система (коричневая/желтая крышка) с активатором свертывания и разделительным гелем.

Полученная из крови сыворотка остается стабильной в течение 7 дней при 2–8 °C. Архивированная сыворотка может храниться в замороженном виде при -20 °C.

• Для исследования уровня гликированного гемоглобина необходима цельная венозная кровь, взятие которой производится в вакуумную систему с антикоагулянтом К2ЭДТА или К3ЭДТА (сиреневая крышка при использовании пробирок типа Vacutainer, красная крышка для пробирок типа Мопоvette). Полученная кровь может хранится при комнатной температуре – до 6 часов, при температуре 2–8 °C – не более 24 часа.

Исследование активности ферментов.

Активность ферментов определяется с диагностическими целями пре имущественно в сыворотке крови. Большая часть ферментов в крови – это тканевые ферменты, попадающие в кровь в результате разрушения клеток, где их концентрация в 1000-10 000 выше, чем в крови. В норме в сыворотке крови регистрируется только очень незначитель

ная активность ферментов. Причинами повышения активности ферментов при патологии являются:

- прямое повреждение клеточных мембран (вирусами и химическими соединениями);
 - гипоксия, аноксия и ишемия тканей;
 - повышенный синтез в тканях (рост злокачественной опухоли).

В сыворотке крови определяют три основные группы ферментов: внутриклеточные, секреторные и экскреторные. Большинство ферментов являются внутриклеточными, в зависимости от локализации они разделяются на:

- неспецифические ферменты, которые катализируют общие для всех тканей реакции обмена и находятся в большинстве органов и тканей например, АСТ, АЛТ, ЛДГ, амилаза, липаза и др.);
- органоспецифические, присутствуют только в определенном типе тканей или органе в высокой концентрации. Повышение в крови уровня органоспецифического фермента указывает прежде всего на повреждение клеток той ткани, в которой этот фермент представлен в наибольшем количестве.

Специфичность ферментов для диагностики патологии.

Фермент	Орган	Диагностическое значение
α-амилаза	Поджелудочная железа	Острый панкреатит, отит
АЛТ	Печень	Заболевания паренхимы
		печени
ACT	Миокард, печень	Инфаркт миокарда,
		заболевания паренхимы
		печени, поражения
		скелетных мышц
ΓΓΤ	Печень	Патология жёлчевыводящих
		путей, алкоголизм
КК	Скелетные мышцы, сердце,	Инфаркт миокарда,
	гладкие мышцы	поражения скелетных мышц
КФ	Простата, костная ткань	Аденома, рак простаты,
		метаболические заболевания
		костной ткани
ЛДГ	Печень, сердце, скелетные	Заболевания паренхимы
	мышцы, эритроциты,	печени, инфаркт миокарда,
	тромбоциты,	гемолиз, неэффективный
	лимфатические узлы	эритропоэз, лимфомы
Липаза	Поджелудочная железа	Острый панкреатит
Холинэстераза	Печень	Отравления
		фосфорорганическими
		соединениями, заболевания
		паренхимы печени
ЩФ	Печень, костная ткань,	Метаболические заболевания

кишечник, почки	костной ткани,
	гепатобилиарная патология

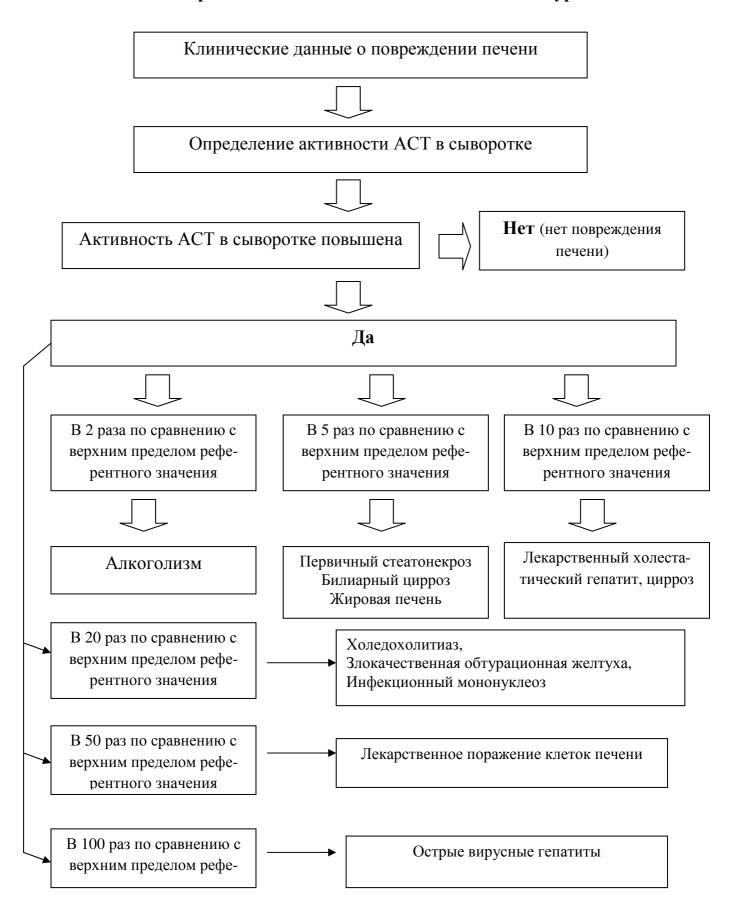
Секреторные ферменты (псевдохолинэстераза) синтезируются в печени и постоянно высвобождаются в плазму. Их активность в сыворотке крови выше, чем в клетках или тканях. В клинической практике они представляют интерес, когда их активность в сыворотке крови становится ниже нормы за счет нарушения функции печени.

Экскреторные ферменты образуются органами пищеварительной системы (поджелудочной железой, слизистой оболочкой кишечника, печенью, эпителием желчных путей). К ним относятся α -амилаза, липаза, щелочная фосфатаза (Щ Φ) и др. В норме их активность в сыворотке крови низка и постоянна. Однако при патологии, когда блокирован любой из обычных путей их экскреции, активность этих ферментов в сыворотке крови значительно увеличивается.

Единицы активности ферментов.

За единицу активности любого фермента в лабораторной диагностике принимают то количество, которое в оптимальных условиях катализирует превращение 1 субстрата в 1 (мкмоль/ мин) при t^0 =37 0 С. При этом объемная активность фермента выражается как МЕ/л (или Ед/л), удельная активность – как МЕ/мг белка.

Аспартатаминотрансфераза (АСТ).


Референтные величины активности АСТ в сыворотке: 0–5–40 Ед/л. Определение активности АСТ используют для выявления и оценки вы раженности цитолитического синдрома при диагностике и мониторинге за болеваний печени, сердца. Тест используют вместе с определением активно сти АЛТ.

Активность АСТ повышена у 93–98% пациентов с инфарктом миокар да (ИМ) в 2–20 раз. При ИМ АСТ повышается в сыворотке через 6–8 ч, мак симальной активности она достигает через 24–36 ч и снижается до нормаль ного уровня к 5–6-му дню. Расширение зоны инфаркта приводит ко второму циклу повышения активности. Степень повышения активности АСТ является мерой массы миокарда, вовлеченной в патологический процесс. Иногда ак тивность АСТ повышается еще до возникновения электрокардиографических признаков ИМ, а отсутствие снижения ее уровня после 3–4-го дня заболева ния прогностически неблагоприятно.

При стенокардии активность АСТ, как правило, остается в пределах нормы. Однако повышение АСТ обнаруживают при тяжелой форме коронар ной недостаточности в первые 24 ч после приступа (нормализация происхо дит на 2-й, реже 3-й день после приступа), а также при длительных присту пах пароксизмальной тахикардии.

АСТ повышается также при остром гепатите и других тяжелых пора жениях гепатоцитов. Умеренное увеличение наблюдается при механической желтухе, у пациентов с метастазами в печень и циррозом. Коэффициент Де Ритиса, т.е. отношение АСТ/АСТ, в норме равное 1,33, при заболеваниях печени ниже этой величины, а при заболеваниях сердца — выше.

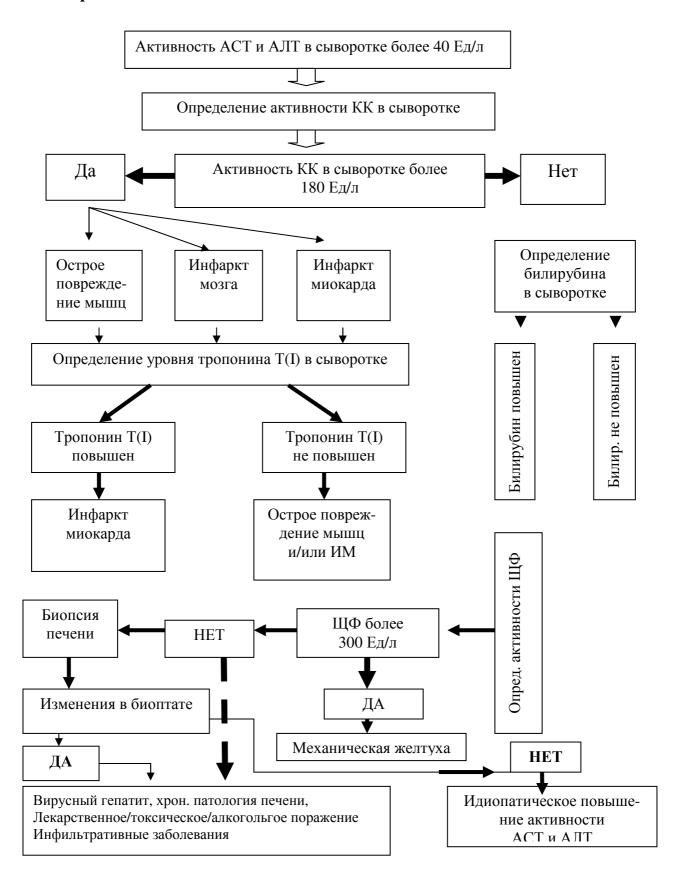
Алгоритм для принятия клинических решений при установлении этиологии поражения печени по значению активности уровня АСТ.

В клинической практике нашло широкое применение одновременное определение в крови активности АСТ и АЛТ; поскольку оно намного инфор мативнее с клинической точки зрения (позволяет судить о локализации и глубине поражения, активности процесса и прогнозировать исход болезни).

Аланинаминотрансфераза (АЛТ).

Референтные величины активности АЛТ в сыворотке: 0–7–40 Ед/л. АЛТ содержится в скелетной мускулатуре, печени, сердце. В сердечной мышце ее значительно меньше, чем АСТ. Самых больших концентраций АЛТ достигает в печени. Повышение активности аминотрансфераз (АСТ и АЛТ) в 1,5–5 раз по сравнению с верхней границей нормы рассматривают как умеренную гиперферментемию, в 6–10 раз – как гиперферментемию средней степени, более чем в 10 раз – как высокую. Степень подъема активности аминотрансфераз говорит о выраженности цитолитического синдрома, но не указывает прямо на глубину нарушений собственно функции органа.

При ИМ повышение активности АЛТ в сыворотке крови выявляется в 50–70% случаев, чаще при обширных некрозах сердечной мышцы. Наиболь шее увеличение активности АЛТ отмечается в острой фазе, достигая в сред нем 130–150% от нормы и заметно уступает таковому АСТ, составляющему в среднем 450–500% от нормы.


При заболеваниях печени прежде всего и наиболее значительно по сравнению с АСТ изменяется активность АЛТ. При остром гепатите, незави симо от его этиологии, активность аминотрансфераз повышается у всех больных. Особенно изменяется активность АЛТ, содержащейся в цитоплаз ме, что способствует быстрому выходу ее из клетки и поступлению в кровя ное русло, поэтому АЛТ – более чувствительный тест ранней диагностики острого гепатита, чем АСТ. Период полураспада АЛТ около 50 ч. АСТ рас положена преимущественно в митохондриях, период полураспада около 20 ч, реагирует на более тяжелые повреждения гепатоцита. При остром вирусном гепатите АЛТ и АСТ повышаются за 10–15 дней до появления желтухи при гепатите А, и за много недель при гепатите В, причем повышаются они одно временно, но АЛТ – значительно больше. При типичном течении вирусного гепатита активность АЛТ достигает максимума на 2-3-й неделе заболевания. При благоприятном его течении активность АЛТ нормализуется через 30–40 сут, активность АСТ – через 25–35 сут. Повторное или прогрессирующее повышение активности аминотрансфераз свидетельствует о новом некрозе или рецидиве болезни. Удлинение периода повышенной активности аминотрансфераз часто служит неблагоприятным признаком, так как может свидетельствовать о переходе острого процесса в хронический.

В остром периоде вирусного гепатита при всех формах, кроме тяжелой, коэффициент Де Ритиса колеблется от 0,55 до 0,65 при тяжелом течении за болевания этот коэффициент составляет в среднем 0,83, что отражает более значительное повышение активности АСТ. В дифференциально-диагностическом отношении имеет некоторое значение то, что при алкогольных поражениях печени, в противоположность вирусным, характерно преимущественное повышение активности АСТ и коэффициента Де Ритиса бо-

лее 2. Для хронических гепатитов характерна умеренная и средняя гиперферментемия.

При латентных формах цирроза печени повышения активности ферментов не наблюдается. При активных формах стойкий, хотя и незначительный подъем активности аминотрансфераз встречается в 74–77% случаев.

Алгоритм лабораторной диагностики причин повышения активности трансаминаз.

Повышение активности АЛТ и АСТ может быть выявлено у прак тически здоровых носителей поверхностного антигена гепатита В, что ука зывает на наличие внешне бессимптомных активных процессов в печени. Активность АСТ и АЛТ, а также щелочной фосфатазы (ЩФ) повыша ется при разрешении хронической сердечной недостаточности (пик обычно на 3-й–4-е сутки).

Лактатдегидрогеназа (ЛДГ).

Референтные величины активности ЛДГ в сыворотке 120—480 Ед/л. Наибольшая активность ЛДГ обнаружена в почках, сердечной мышце, скелетной мускулатуре и печени. ЛДГ содержится не только в сыворотке, но и в значительном количестве в эритроцитах, поэтому сыворотка для исследо вания должна быть без следов гемолиза.

Большинство органов и тканей человека содержит пять изоферментов ЛДГ. Характер изоферментного спектра ЛДГ и тип обмена веществ в ткани коррелируют между собой. В тканях с преимущественно аэробным обменом веществ (сердце, мозг, почки) наибольшей ЛДГ-активностью обладают изоферменты ЛДГ1 и ЛДГ2 (или гидроксибутиратдегидрогеназа). В тканях с выраженным анаэробным обменом веществ (печень, скелетная мускулатура) преобладают изоферменты ЛДГ4 и ЛДГ5. В сыворотке крови здорового человека постоянно обнаруживаются все пять изоферментов ЛДГ. Имеется закономерность в отношении активности изоферментов ЛДГ: активность ЛДГ2 > ЛДГ1 > ЛДГ3 > ЛДГ4> ЛДГ5. Повреждение того или иного органа изменяет изоферментный спектр сыворотки крови, причем эти изменения обусловлены спецификой изоферментного состава поврежденного органа.

В лаборатории наиболее часто определяют активность общей ЛДГ (сумму всех пяти изоферментов), но могут определять более специфичный для сердечной мышцы изофермент ЛДГ1 (гидроксибутиратдегидрогеназа) или ЛДГ5 – для заболеваний печени.

Повышенная активность ЛДГ в физиологических условиях наблюдает ся у беременных, новорожденных, а также после интенсивных физических нагрузок.

Повышение активности ЛДГ при ИМ отмечается через 8–10 ч после его начала. Спустя 48–72 ч достигается максимум активности (повышение обычно в 2–4 раза), и она остается увеличенной в течение 10 сут. Эти сроки могут варьировать в зависимости от величины участка поврежденной мышцы сердца. Увеличение активности общей ЛДГ у пациентов с ИМ происходит за счет резкого повышения ЛДГ1 и частично ЛДГ2. У пациентов со стенокардией повышения активности ЛДГ не наблюдается, что позволяет применять определение ЛДГ в пределах 2–3 сут после ангинозного приступа как высоконадежный критерий отсутствия поражения сердечной мышцы.

Умеренное увеличение общей ЛДГ наблюдается у большинства паци ентов с острым коронарным синдромом (ОКС) (без инфаркта), миокардитом, у больных хронической сердечной недостаточностью, с застойными явле

ниями в печени. У больных аритмией сердца определяются нормальные ве личины ЛДГ, а применение электроимпульсной терапии иногда ведет к ее увеличению.

Источником увеличения активности ЛДГ может быть легочная ткань при эмболии и инфаркте легких. Сочетание нормальной активности АСТ, увеличенной ЛДГ и повышения концентрации билирубина может служить диагностической триадой легочной эмболии и дифференциации ее от ИМ. При пневмониях активность фермента иногда может не повышаться.

При миопатиях (мышечные дистрофии, травматические повреждения мышц, воспалительные процессы, расстройства, связанные с эндокринными и метаболическими заболеваниями) отмечается увеличение активности ЛДГ; при нейрогенных заболеваниях мышц активность ЛДГ не повышается.

При остром вирусном гепатите активность ЛДГ в сыворотке крови увеличена в первые дни желтушного периода, и при легкой и среднетяжелой формах заболевания довольно быстро возвращается к нормальному уровню. Тяжелые формы вирусного гепатита, и особенно развитие печеночной недостаточности, сопровождаются выраженным и более длительным повышением ЛДГ. При механической желтухе на первых стадиях закупорки желчных протоков активность ЛДГ в норме, на более поздних стадиях наблюдается подъем активности ЛДГ вследствие вторичных повреждений печени.

Щелочная фосфатаза (ЩФ).

ЩФ широко распространена в тканях, особенно в слизистой оболочке кишечника, остеобластах, стенках желчных протоков печени, плаценте и лактирующей молочной железе. В сыворотке крови можно определить активность общей ЩФ (ее называют печеночной), а также отдельно активность костной и интестинальной (кишечной) ЩФ.

Референтные величины активности ЩФ в сыворотке крови.

Возрастная группа	Общая ЩФ (Ед/л)
Новорожденные	Менее 420
Дети	Менее 480
Взрослые	Менее 150

Примерно лишь у 65% госпитализированных пациентов высокая ак тивность ЩФ обусловлена заболеваниями печени. Активность ЩФ наиболее часто повышается вследствие повреждения или деструкции гепатоцитов или нарушения оттока желчи (холестаз). Некроз печеночных клеток как причина повышения активности ЩФ играет ведущую роль при вирусных и аутоим мунных гепатитах, токсических и лекарственных повреждениях печени. Холестаз как причина повыщения активности ЩФ в крови развивается при внепеченочной обструкции желчных протоков например, при закупорке камнем или развитии послеоперационной стриктуры), сужении внутрипеченочных

протоков (например, при первичном склерозирующем холангите), повреждении желчных протоков (например, при первичном билиарном циррозе печени) или нарушении транспорта желчи на уровне мелких желчных протоков (при применении ряда лекарственных препаратов, например, хлорпромазина). В ряде случаев активность ЩФ повышается при одновременном действии обоих механизмов повреждения.

У 30% желтушных пациентов с циррозом печени выявляется увеличе ние активности ЩФ. Повышение активности ЩФ наблюдается у 90% боль ных первичным раком печени и при метастазах в печень. Резко возрастает активность ЩФ при отравлениях алкоголем на фоне хронического алкого лизма. Она может повышаться при приеме лекарственных средств, обладающих гепатотоксическим эффектом (тетрациклин, парацетамол, фенацетин, 6-меркаптопурин, салицилаты и др.). Приблизительно у 50% пациентов с инфекционным мононуклеозом на 1-ой неделе заболевания отмечается повышение активности ЩФ.

Закупорка внепеченочных желчных протоков сопровождается резким увеличением активности ЩФ. При тяжелой обструктивной желтухе актив ность ЩФ в сыворотке крови может превышать верхний предел нормы в 10 раз и более.


У женщин, принимающих противозачаточные препараты, содержащие эстроген и прогестерон, может развиться холестатическая желтуха и с повы шением активности ЩФ. Очень высокие цифры активности фермента на блюдаются у женщин с преэклампсией, что является следствием поврежде ния плаценты. Низкая активность ЩФ у беременных говорит о недостаточ ности развития плаценты.

Помимо названных, повышение активности ЩФ определяется при следующих заболеваниях и состояниях: повышенном метаболизме в костной ткани (при заживлении переломов); первичном и вторичном гиперпаратиреозе, остеомаляции, почечном рахите, обусловленном витамин-D-резистентным рахитом, сочетающимся с вторичным гиперпаратиреозом; цитомегаловирусной инфекции у детей, внепеченочном сепсисе, язвенном колите, регионарном илеите, кишечных бактериальных инфекциях, тиреотоксикозе. Это обусловлено тем, что ЩФ вырабатывается не только в печени, но и в других органах – костях, кишечнике.

Значения уровня активности ЩФ (пороги для принятия клинических решений) при установлении клинического диагноза поражения печени представлены на рисунке. Ряд цифр представляет собой множители, на которые умножается значение верхнего референтного предела для ЩФ.

Снижение активности фермента отмечается при гипотиреозе, цинге, выраженной анемии, квашиоркоре, гипофосфатемии.

Алгоритм для принятия клинических решений при установлении этиологии поражения печени по значениям активности ЩФ.

Костная щелочная фосфатаза (остаза).

Костная ЩФ продуцируется остеобластами кости. У детей ЩФ повышена до периода полового созревания. Референтные величины активности костной ЩФ в сыворотке крови представлены в таблице.

Референтные величины активности костной ЩФ в сыворотке.

Возраст	Активность, Ед/л
1 месяц	60 – 181
3 года	60 – 121
10 лет	90 – 181
Взрослые до 31 года	23 – 55
Взрослые старше 31 года	16 – 46

Увеличение активности общей и костной ЩФ сопровождает рахит любой этиологии, болезнь Педжета, костные изменения, связанные с гиперпаратиреозом. Быстро растет активность фермента при остеогенной саркоме, метастазах рака в кости, миеломной болезни, лимфогранулематозе с поражением костей. При лечении гипокальциемии витамином D необходимо контролировать его по уровню активности ЩФ в крови. Нормализация активности ЩФ является показанием к прекращению лечения.

При болезни Педжета содержание кальция и фосфатов в крови обычно в пределах нормы, но характерен очень высокий уровень активности ЩФ, в связи с чем следует регулярно мониторировать уровень ЩФ. Быстрое нарас тание уровня ЩФ может указывать на малигнизацию пораженной кости.

Остеопороз, в основе которого лежит первичное уменьшение массы матрикса костной ткани (потеря кальция при этом вторична), сопровождается нормальным уровнем общей ЩФ в крови или незначительным ее повышением, плохо коррелирует с параметрами костеобразования. Однако костная ЩФ служит чувствительным маркером ускоренного метаболизма кости во время менопаузы.

Гамма-глутамилтрансфераза (ГГТ).

Референтные величины активности ГГТ в сыворотке: у мужчин — 10—70 Ед/л; у женщин — 6—45 Ед/л.

В значительных концентрациях ГГТ обнаружена в печени, поджелудочной железе, почках и предстательной железе (поэтому у мужчин активность ГГТ в сыворотке крови приблизительно на 50% выше, чем у женщин).

Повышение активности ГГТ в сыворотке крови может быть обусловлено следующими причинами:

• усилением синтеза в результате активации ферментов, обеспечивающих этот процесс, алкоголем и лекарственными препаратами;

- повреждением клеточных мембран под действием токсических агентов (в том числе спирта), при ишемическом повреждении и инфекционном поражении печени;
- освобождением фермента от связи с клеточными мембранами в результате детергентного действия поверхностно активных желчных кислот при всех видах холестаза.

Изменение активности ГГТ в сыворотке имеет большое диагностическое значение при заболеваниях печени и гепатобилиарного тракта. Этот фермент более чувствителен к нарушениям в клетках печени, чем АЛТ, АСТ, ЩФ и т.д. Отсутствие повышенной активности этого фермента при костных заболеваниях позволяет дифференцировать источник повышения ЩФ.

Особенно чувствительна ГГТ к влиянию на печень длительного потребления алкоголя. У лиц, злоупотребляющих алкоголем, уровень ГГТ в сыворотке коррелирует с количеством принимаемого алкоголя. Тест особенно ценен для контроля лечения алкоголизма. Прекращение приема алкоголя снижает активность фермента приблизительно на 50% в течение 10 дней.

Определение активности ГГТ используется для установления гепатотоксичности и положительно в 90% случаев заболеваний печени. В большинстве случаев у таких больных в крови наблюдается повышение активности трансаминаз и ГГТ. Изолированное повышение активности ГГТ наблюдают у 6–20% пациентов с патологией гепатобилиарной системы. Повышение активности ГГТ более чем в 3 раз вызывают антиконвульсантные препараты, жировая дистрофия печени и сердечная недостаточность.

При острых гепатитах активность ГГТ повышается раньше, чем активность АСТ и АЛТ. На высоте заболевания активность ГГТ ниже (повышена в 2–5 раз), чем активность АСТ и АЛТ, и нормализуется медленнее. Это позволяет использовать ГГТ при контроле за выздоровлением пациента.

Наиболее высокую активность ГГТ (в 5–30 раз выше референтного интервала) наблюдают при внутри- и внепеченочном холестазе. Несколько меньшие значения активности фермента регистрируют при первичных опухолях печени и метастазах в печень. При злокачественных опухолях другой локализации постепенное увеличение активности ГГТ указывает на наличие метастазов в печень. Активность ГГТ может быть использована в качестве маркера рака поджелудочной и предстательной железы, так как отражает ремиссии и рецидивы.

Необходимо еще раз заметить, что ГГТ многозначна в диагностическом отношении. По крайней мере пять процессов повышают ее активность: цитолиз, холестаз, интоксикация алкоголем, опухолевой рост в печени, лекарственная интоксикация. Такая этиологическая разнородность механизмов повышения ГГТ требует очень тщательной оценки причин гиперферментемии. Обнаружение высокой активности ГГТ заставляет искать причину этого повышения. Как «отсеивающий» тест и метод контроля за течением

известного патологического процесса, исследование ГГТ буквально незаменимо по клиническому значению.

Холинэстераза (ХЭ).

Референтные величины активности XЭ в сыворотке: 3600–12900 Ед/л.

В тканях человека встречаются два различных фермента этого типа: ацетилхолинэстераза (истинная XЭ), которая преимущественно находится в нервной ткани, скелетных мышцах, эритроцитах; и сывороточная, или псевдо-XЭ, которая широко распространена, присутствует в печени, поджелудочной железе, секретируется печенью в кровь.

Определение активности XЭ в сыворотке представляет наибольший клинический интерес для диагностики отравлений фосфорорганическими отравляющими веществами и инсектицидами, а также как показатель состояния белково-синтетической функции печени. Отравления фосфорорганическими веществами и инсектицидами сопровождаются выраженным снижением активности XЭ.

Активность XЭ наиболее резко снижается при тяжелых хронических заболеваниях печени, особенно при циррозе. Значительное снижение активности XЭ наблюдается при распространенных бластоматозных поражениях печени. В начальных стадиях обтурационной желтухи снижение активности XЭ встречается очень редко.

Ярким проявлением снижения белково-синтетической функции печени у пациентов с вирусным гепатитом при развитии острой печеночной недостаточности служит резкое снижение активности XЭ, при этом степень снижения активности XЭ обратно пропорциональна тяжести течения заболевания. Наиболее низкие показатели отмечаются у пациентов за несколько дней до развития печеночной комы. Однако длительный период полураспада сывороточной XЭ (7–10 дней) снижает ее возможности в диагностике острой печеночной недостаточности.

При ИМ резкое падение активности XЭ отмечается к концу первых суток заболевания и обусловлено шоком, который приводит к тяжелому повреждению печени.

В последнее время исследование этого фермента широко используется для контроля за применением релаксантов в хирургической практике. Курареподобные вещества (дитилин, сукцинилхолин), применяемые в хирургии для расслабления мышц, обычно быстро разрушаются. Тяжелые последствия применения этих средств (длительное апноэ, холинергический шок) возможны как при приобретенном недостатке ХЭ (чаще при хронических заболеваниях печени), так и при врожденном ферментном дефекте.

При нефротическом синдроме наблюдается повышение активности XЭ. Это связано с увеличением синтеза альбуминов печенью из-за быстрой потери мелкодисперсной фракции белков с мочой.

Повышение XЭ наблюдается также иногда при ожирении и экссудативной энтеропатии. Небольшое повышение активности XЭ иногда отмечается при артериальной гипертензии, сахарном диабете, депрессивных неврозах, тревоге, маниакально-депрессивном психозе.

Альфа-амилаза в сыворотке и моче.

Референтные величины активности α -амилазы: в сыворотке: 10–100 $E\partial/\pi$; в моче — 30–640 $E\partial/\pi$.

Наиболее богаты α -амилазой поджелудочная и слюнные железы. Плазма крови человека содержит α -амилазы двух типов: панкреатическую (Ртип), вырабатываемую поджелудочной железой, и слюнную (S-тип), продуцируемую слюнными железами.

В физиологических условиях амилаза сыворотки крови состоит на 40% из панкреатической амилазы и на 60% из слюнной амилазы.

Определение активности α -амилазы имеет важное значение в диагностике заболеваний поджелудочной железы. Повышение активности α -амилазы в сыворотке крови в 2 и более раз должно расцениваться как симптом поражения поджелудочной железы. Небольшая гиперамилаземия дает основание заподозрить патологию поджелудочной железы, но может иногда наблюдаться при заболеваниях других органов.

С мочой выделяется в основном P-амилаза, что является одной из причин большей информативности о функциональном состоянии поджелудочной железы уроамилазы, чем амилазы сыворотки крови. 65% амилазной активности мочи обусловлено панкреатической амилазой. Этим объясняется то обстоятельство, что при остром панкреатите именно она увеличивается в сыворотке (до 89%) и особенно в моче (до 92%), без изменения показателей амилазы слюнных желез.

При остром панкреатите активность амилазы крови и мочи увеличивается в 10–30 раз. Гиперамилаземия наступает в начале заболевания (уже через 4–6 ч), достигает максимума через 12–24 ч, затем быстро снижается и приходит к норме на 2–6-й день. Уровень повышения сывороточной амилазы не коррелирует с тяжестью панкреатита.

Активность амилазы в моче (используется суточная моча или разовая порция мочи) начинает повышаться через 6–10 ч после острого приступа панкреатита и возвращается к норме через 3 сут. В некоторых случаях уровень амилазы в моче имеет две волны повышения в течение 3 сут. Гиперамилазурия при остром и обострении хронического панкреатита регистрируется у 50% пациентов через 8–12 ч, у 25% – через 12–18 ч, у 66,6% – через 18–24 ч, у 75% – через 24–36 ч, у 100% – через 36–48 ч и у 62,5% – через 48-72 ч. Диагностическая чувствительность определения амилазы в сыворотке для острого панкреатита составляет 95%, специфичность – 88%.

Острые панкреатиты могут протекать без повышения активности амилазы (в частности, при панкреонекрозе). Более точную информацию получают при исследовании активности амилазы в суточном объеме мочи. Важ-

ное, а в ряде случаев и решающее значение для распознавания рецидивирующей формы острого панкреатита имеет повторное повышение активности амилазы крови и мочи во время повторяющихся рецидивов болевого синдрома. Данный признак имеет исключительно важное значение для распознавания легких форм рецидивирующего острого панкреатита. Поэтому следует еще раз подчеркнуть необходимость повторных исследований активности α-амилазы мочи на протяжении первых 2 сут заболевания. При различных формах острого панкреатита динамика повышения α-амилазы в крови и моче носит различный характер. Так, для отечного панкреатита характерна кратковременная амилаземия на 1-е-3-и сутки заболевания; для панкреонекроза — высокая и длительная амилаземия или, наоборот, кратковременная гиперамилаземия на 3-й сутки заболевания.

Выявление гиперамилаземии и гиперамилазурии является важным, но не специфичным маркером острого панкреатита; кроме того, повышение ее активности может быть кратковременным. Для большей информативности полученных результатов исследования полезно сочетать определение активности амилазы крови и мочи с параллельным определением концентрации креатинина в моче и сыворотке крови. На основании этих данных рассчитывается индекс амилазо-креатининового клиренса по формуле:

 $AM \times KpC$ $KpM \times AC \times 100$,

где AM – амилаза мочи; AC – амилаза сыворотки; KpM – креатинин в моче; KpC – креатинин в сыворотке.

В норме амилазо-креатининовый индекс не выше 3, превышение считается признаком панкреатита. При остром панкреатите уровень амилазы сыворотки и показатель амилазо-креатининового клиренса обычно повышены за счет подавления почечного механизма канальцевой реабсорбции амилазы. При заболеваниях, протекающих под маской панкреатита, содержание амилазы сыворотки может увеличиваться, но показатель амилазо-креатининового клиренса остается нормальным, так как отсутствует канальцевый дефект. Для этого исследования очень важно проводить взятие крови и мочи в одно и то же время.

При хроническом панкреатите активность амилазы в крови и моче повышается (у 10–88 и у 21–70% пациентов соответственно) в период обострения процесса и при возникновении препятствий к оттоку панкреатического сока (воспаление, отек головки поджелудочной железы и СДавление протоков, рубцовый стеноз сосочка двенадцатиперстной кишки и др.). При склеротической форме панкреатита гиперамилаземия определяется также степенью нарушения проходимости протоков и функциональной способностью оставшейся части железы. При хронических панкреатитах с фиброзными изменениями поджелудочной железы обострения, нередко выраженные и распространенные, сопровождаются сравнительно небольшим подъемом активности амилазы. Вследствие нарушения функциональной способ-

ности поджелудочной поджелудочной железы гиперамилаземия нередко может отсутствовать при остром гнойном панкреатите (при обширных «тотальных» некрозах поджелудочной железы).

При раке поджелудочной железы уровень амилазы в крови и моче в одних случаях повышается; в других же случаях может оставаться нормальным и даже понижаться.

Оценка результатов исследования активности амилазы в крови и моче затруднена тем, что фермент содержится в слюнных железах, толстой кишке, скелетных мышцах, почках, легких, яичниках, маточных трубах, предстательной железе. Поэтому уровень амилазы может быть повышен при многих заболеваниях, имеющих сходную картину с острым панкреатитом: остром аппендиците, перитоните, перфоративной язве желудка и двенадцатиперстной кишки, кишечной непроходимости, холецистите, тромбозе брыжеечных сосудов, а также при феохромоцитоме, диабетическом ацидозе, после операций по поводу пороков сердца, после резекции печени, приема больших доз этанола, употребления препаратов опия, сульфаниламидов, морфина, тиазовых диуретиков, пероральных контрацептивов. Повышение амилазной активности при этих заболеваниях обусловлено разными причинами и носит в большинстве случаев реактивный характер. Вследствие значительных запасов амилазы в ацинарных клетках любое нарушение их целостности или малейшее затруднение оттока секрета поджелудочной железы может привести к значительному попаданию амилазы в кровь. У больных перитонитом увеличение амилазной активности может наблюдаться в результате развития образующих амилазу бактерий. Обычно активность α-амилазы при перечисленных заболеваниях повышается в крови в 3–5 раз.

Снижение активности α-амилазы в крови может быть обнаружено при тиреотоксикозе, ИМ, некрозе поджелудочной железы.

Панкреатическая α-амилаза.

Референтные величины активности панкреатической α-амилазы: сыворотка: 30–55% от общей амилазы в сыворотке (в среднем 43%) или 13–53 Ед/л; моча: 60–70% от общей амилазы в моче (в среднем 65%).

Основная ценность определения P-типа α -амилазы заключается в том, что увеличение ее активности высокоспецифично для заболеваний поджелудочной железы. Панкреатическая α -амилаза повышается при остром панкреатите. Активность общей амилазы в этом случае повышена за счет панкреатической фракции. Диагностическая чувствительность панкреатической фракции амилазы в сыворотке крови для острого панкреатита составляет 92%, специфичность — 85%.

Определение активности панкреатической фракции амилазы особенно важно при хроническом панкреатите у пациентов с нормальным уровнем общей амилазы. У пациентов с хроническим панкреатитом панкреатическая амилаза составляет 75–80% общей амилазы крови. Повышение панкреатической амилазы указывает на атаку хронического панкреатита, а снижение – на экзокринную недостаточность поджелудочной железы при атрофии аци-

нарной ткани и фиброзе органа у пациентов, длительно страдающих данным заболеванием.

Активность панкреатической α -амилазы помимо диагностики острого панкреатита определяют также после операции на органах брюшной полости с целью ранней диагностики развития осложнения — послеоперационного панкреатита. Панкреатическая α -амилаза в моче повышается при остром панкреатите, причем составляет основную часть общей амилазы, так как выводится с мочой лучше, чем слюнная фракция.

Активность панкреатической фракции амилазы, в отличие от общей, не повышается при паротите, диабетическом кетоацидозе, раке легкого, острых гинекологических заболеваниях. Вместе с тем, тест может быть ложноположительным при других непанкреатических заболеваниях.

Липаза.

Референтные величины активности липазы в сыворотке: 0–190 Ед/л. Определение активности липазы в крови служит наиболее информативным критерием диагностики острого панкреатита. В отличие от α-амилазы, активность липазы не повышается при паротите, внематочной беременности, аппендиците. Содержание липазы увеличивается и снижается параллельно повышению и снижению активности амилазы, но нормализация ее уровня происходит позже нормализации амилазы. Иногда уровень липазы в крови повышается раньше, чем увеличивается активность амилазы, и остается повышенным длительное время.

При остром панкреатите активность липазы в крови увеличивается в течение нескольких часов после острого приступа, достигая максимума через 12–24 ч (увеличивается до 200 раз), и остается повышенной в течение 10–12 дней. Прогноз заболевания плохой, если уровень липазы в крови повышается в 10 и более раз и не снижается до 3-кратного превышения нормы в течение ближайших нескольких дней. Диагностическая чувствительность липазы в сыворотке крови для острого панкреатита составляет 86%, специфичность – 99%. Одновременное определение уровня α-амилазы (кровь и моча) и липазы – основа диагностики острого панкреатита. Повышение обоих или одного из ферментов выявляется у 98% больных с острым панкреатитом. При 3-кратном повышении активности липазы в сыворотке крови диагностическая чувствительность теста в отношении острого панкреатита составляет 100%, специфичность – 99%, в то время как аналогичные изменения активности амилазы имеют чувствительность 72%, специфичность – 99%.

Активность липазы сыворотки крови обладает высокой чувствительностью в отношении диагностики острого алкогольного панкреатита, в то время как для пациентов с закупоркой желчевыводящих путей, большого дуоденального сосочка и панкреатических протоков характерен высокий уровень амилазы. В связи с этим для установления этиологии острого пакреатита иногда определяют липазо-амилазовый коэффициент: отношение активности липазы к активности амилазы в сыворотке крови. Величина

липазо-амилазового коэффициента выше 2,0 позволяет диагностировать острый алкогольный панкреатит (чувствительность – 91%, специфичность – 76%). Только у пациентов с острым алкогольным панкреатитом коэффициент может быть выше 5,0.

Повышение активности липазы в крови может иметь место при инфаркте кишки, перитоните, желчной колике. Отмечено повышение активности липазы в крови при разрушении жировой ткани – костных переломах, ранениях мягких тканей, после операций, при раке молочной железы.

Креатинкиназа (КК) общая.

Референтные величины активности общей KK в сыворотке: мужчины -39-308 Ед/л, женщины -26-192 Ед/л.

Наибольшее диагностическое значение имеют следующие изоферменты КК: КК-ММ (мышечный), КК-МВ (сердечный), КК-ВВ (мозговой). Повышение активности КК в сыворотке крови наблюдается из-за выхода фермента из клеток при их повреждении.

Определение активности КК используют для выявления и мониторинга цитолитического синдрома при заболеваниях миокарда и скелетной мускулатуры. При ИМ поступление КК из сердечной мышцы в сыворотку опережает другие ферменты, поэтому определение активности КК широко использовалось для ранней диагностики ИМ. Увеличение активности КК находят у 95 – 99% пациентов с ИМ. КК повышается уже через 2-4 ч после острого приступа, достигая максимума через 24-36 ч, и превышает нормальные величины в 5-20 раз. Следует подчеркнуть, что уровень КК сравнительно быстро возвращается к норме (на 3-й-6-й день). Поэтому в случаях, когда определение КК не было выполнено в этот период после развития инфаркта, трудно рассчитывать на помощь данного показателя в диагностике. В то же время именно быстрота динамики КК делает определение этого фермента особенно ценным для распознавания повторных инфарктов, которые, не давая четких электрокардиографических изменений, могут вызывать повторный подъем активности КК (для выявления их рекомендуется проведение повторных регулярных исследований). Исследование активности КК существенно важно при атипичном течении ИМ и отсутствии характерных электрокардиографических изменений, что может наблюдаться при наличии блокады пучка Гиса, аритмиях, после терапии дигиталисом и в тех случаях, когда у больного уже был инфаркт.

Изменение активности ферментов при остром ИМ.

Фермент	Начало увели- чения актив- ности, часы	Максимум уве- личения актив- ности, часы	Возвращение к норме, сутки	Кратность увеличения, раз
ACT	4-6	24-48	4-7	2-20
КК	2-4	24-36	3-6	3-30
ЛДГ	8-10	48-72	8-9	2-4

МВ-фракция креатинкиназы.

Референтные величины активности MB-фракции КК в сыворотке составляют 6% от общей активности КК или 0–25 Ед/л.

Повышение активности КК-МВ более специфично для ИМ. При ИМ КК-МВ составляет более 6% общей КК, увеличение наблюдается уже после острого приступа, максимум достигается через 12–24 ч, на 3-й сутки активность КК-МВ возвращается к нормальным значениям при неосложненном течении ИМ. При расширении зоны инфаркта активность КК-МВ повышена дольше, что позволяет диагностировать инфаркт пролонгированного и рецидивирующего течения. Максимум активности КК-МВ часто достигается раньше максимума активности общей КК. Величина повышения КК и КК-МВ соответствует величине пораженной зоны миокарда. Если в первые часы ИМ больному начали проводить тромболитическую терапию, то пик активности КК и КК-МВ может появиться раньше, чем обычно, что объясняется вымыванием фермента из пораженной зоны (результат реперфузии – восстановления проходимости тромбированной коронарной артерии). Активность КК-МВ при ИМ колеблется от 6 до 25%.

Различные опухоли могут продуцировать КК-МВ, на долю которой приходится до 60% и более общей активности КК. В этой связи, если КК-МВ составляет более 25% общей КК, необходимо думать о злокачественном новообразовании как причине повышения активности фермента. Присутствие в крови ВВ-фракции может симулировать увеличение МВ-фракции, вплоть до превышения уровня МВ-фракции над общей КК. ККВВ появляется при нарушении гематоэнцефалического барьера (после операций на мозге или при травме мозга). ВВ-фракция также возникает при серьезных повреждениях кишечника и после родов (при кесаревом сечении).

Повышение фракции КК-МВ в отдельных случаях наблюдается при миокардитах и миокардиодистрофиях различного течения (наиболее часто при миодистрофии Дюшена), однако КК-МВ составляет менее 3% общей КК. При остром миокардите КК и КК-МВ могут быть нормальными или сильно увеличенными, похожими на ИМ, в зависимости от характера повреждения миокарда.

Повреждение скелетной мускулатуры сопровождается значительным увеличением ММ-фракции, которая может симулировать повышение МВфракции. При рабдомиолизе диагностическая чувствительность исследования активности КК (повышается в 5 раз и более) выше, чем АСТ и ЛДГ.

Заболевания и состояния, сопровождающиеся повышением уровня активности КК и КК-МВ.

1. Физический стресс и травмы мышц:

- увеличение мышечной массы в результате физических упражнений;
- физический стресс (перегрузка);
- хирургические вмешательства, прямая травма, внутримышечные инъекции;

- острый психоз, острое повреждение мозга, кома (некроз мышц при пролежнях);
 - спазмы (эпилепсия, тетанус), роды;
 - сильные ожоги; поражения электрическим током.
 - 2. Дегенеративные и воспалительные повреждения:
 - мышечная дистрофия;
 - миозит (коллагенозы, вирусные инфекции, трихенелез);
 - миокардит.
 - 3. Токсические поражения мышц:
 - острое алкогольное отравление, белая горячка;
 - экзогенная интоксикация (бромиды, барбитураты, угарный газ);
 - тетания;
 - медикаменты (клофибрат, бронхолитики);
 - токсический рабдомиолиз (героин, амфетамины);
 - злокачественная гипертермия.
 - 4. Метаболические поражения мышц:
 - гипотиреоз;
- метаболический рабдомиолиз (гипокалиемия, гипофосфатемия, гиперосмолярные состояния);
 - гликогеноз (тип V).
- 5. Гипоксические поражения мышц: шок, периферическая эмболия, гипотермия.

Очень высокая активность КК часто наблюдается при спазмах, гипоксии скелетных мышц, вызванной шоком, токсическим повреждением и очень редко генетическими нарушениями метаболизма гликогена или липидов.

Кислая фосфатаза.

Референтные величины активности кислой фосфатазы в сыворотке: 0-6 Ед/л.

У мужчин половину содержащейся в сыворотке кислой фосфатазы вырабатывает предстательная железа, остальную часть – печень и разрушающиеся тромбоциты и эритроциты. У женщин фермент вырабатывается печенью, эритроцитами и тромбоцитами.

Определение активности кислой фосфатазы в клинической практике проводится для диагностики рака предстательной железы. Активность кислой фосфатазы повышается при раке предстательной железы далеко не всегда: только у 20–25% пациентов без метастазов и у 60% больных с метастазами. Степень повышения активности кислой фосфатазы особенно велика у пациентов при наличии костных метастазов рака предстательной железы. Определение активности кислой фосфатазы может быть использовано для дифференциальной диагностики метастазов рака предстательной железы в кости и заболеваний костной ткани, в частности остеодистрофий, при кото-

рых обычно повышена активность Щ Φ , в то время как при метастазах рака предстательной железы в кости повышается активность в крови как щелочной, так и кислой фосфатазы.

Следует иметь в виду, что массаж предстательной железы, катетеризация, цистоскопия, ректальные исследования повышают активность кислой фосфатазы, поэтому кровь на исследования надо брать не раньше чем через 48 ч после перечисленных процедур.

Повышение активности кислой фосфатазы может иметь место при повышенном разрушении тромбоцитов (тробоцитопения, тромбоэмболии и др.), гемолитической болезни, прогрессирующей болезни Педжета, метастатических поражениях костей, миеломной болезни (не всегда), болезни Гоше и Нимана-Пика, через 1–2 дня после операции на предстательной железе или после биопсии.

Простатическая фракция кислой фосфатазы.

Референтные величины активности простатической фракции кислой фосфатазы в сыворотке равны 0,05–2,6 Ед/л.

Определение простатической фракции кислой фосфатазы — более специфический тест для диагностики рака предстательной железы, чем определение общей активности кислой фосфатазы. Повышение ее активности характерно для рака предстательной железы, особенно с метастазами, наблюдается также при инфаркте простаты после катетеризации мочевого пузыря. При болезни Гоше и Нимана-Пика повышения активности фермента не наблюдается, если отсутствует кистозное изменение предстательной железы. По своей чувствительности и специфичности для скрининга рака предстательной железы общая и простатическая фракция кислой фосфатазы уступают исследованию простатического специфического антигена (ПСА), поэтому не используются широко в клинической практике.

Субстраты и продукты биохимических реакций.

Исследование показателей пигментного обмена.

В клинических лабораториях измеряют концентрацию общего и прямого билирубина, по разнице рассчитывают концентрацию непрямого билирубина. Если общий билирубин не превышает референтных пределов, допустимо не проводить измерение прямого билирубина.

Общий билирубин.

Референтные величины содержания общего билирубина в сыворотке 1,7-21,0 мкмоль/л.

При гипербилирубинемии более 27–34 мкмоль/л развивается синдром желтухи (легкая форма – до 85 мкмоль/л, среднетяжелая – 86-169 мкмоль/л,

тяжелая форма – свыше 170 мкмоль/л), обусловленный накоплением билирубина в тканях организма с появлением желтой окраски кожи и конъюнктивы.

Это состояние может быть следствием трех основных групп заболеваний:

- болезней, связанных с повышенным образованием билирубина (в большем количестве, чем то, которое нормальная печень может экскретировать), при этом печень и желчные пути обычно не вовлечены в патологический процесс; наиболее частое заболевание этой группы гемолитическая анемия, для которой характерно усиленное разрушение эритроцитов;
- болезней, связанных с повреждением клеток печени или врожденными ферментопатиями, а следовательно, с нарушением их способности конъюгировать билирубин (болезни печени);
- болезней, связанных с нарушением оттока желчи (следовательно, снижением экскреции билирубина), вследствие закупорки желчевыводящих протоков печени (болезни желчевыводящих путей).

В зависимости от того, какой тип билирубина присутствует в сыворотке крови — неконъюгированный (непрямой) или конъюгированный (прямой), гипербилирубинемия классифицируется как неконъюгированная и конъюгированная соответственно. В клинической практике наиболее широкое распространение получило деление желтух на гемолитические, паренхиматозные и обтурационные. Гемолитические и паренхиматозные желтухи это неконъюгированная, а обтурационные — конъюгированная гипербилирубинемия.

При гемолитической желтухе гипербилирубинемия сочетается с повышенным выделением уробилиногена с мочой и калом, так как он образуется в кишечнике в большом количестве. Кроме гемолитических анемий гемолиз усилен при В12-дефицитной анемии, малярии, массивных кровоизлияниях в ткани, инфаркте легкого, при синдроме размозжения мягких тканей (неконьюгированная гипербилирубинемия). Частой формой гемолитической желтухи и гипербилирубинемии является физиологическая желтуха у новорожденных (встречается у 60% младенцев в первые недели жизни).

Гемолитическими по своему происхождению могут быть желтухи, вызванные действием лекарственных средств, усиливающих распад (гемолиз) эритроцитов (например, ацетилсалициловой кислоты, тетрациклина и др.).

При паренхиматозной желтухе наступает деструкция гепатоцитов, нарушается экскреция прямого (конъюгированного) билирубина в желчные капилляры. Прямой билирубин попадает непосредственно в кровь, где его содержание значительно увеличивается. Кроме того, снижается способность печеночных клеток синтезировать билирубин-глюкурониды; вследствие чего количество непрямого билирубина также увеличивается. Повышение концентрации в крови прямого билирубина приводит к его появлению в моче вследствие фильтрации через мембрану почечных клубочков. Непрямой билирубин, несмотря на увеличение концентрации в крови, в мочу не поступает. Поражение гепатоцитов сопровождается нарушением их способности разрушать всосавшийся из тонкого кишечника мезобилиноген (уробилино-

ген). Повышение содержания уробилиногена в моче может наблюдаться еще в дожелтушный период. В разгар вирусного гепатита возможно снижение и даже исчезновение уробилиногена в моче. Это объясняется тем, что увеличивающийся застой желчи в печеночных клетках ведет к уменьшению выделения билирубина и, следовательно, к уменьшению образования уробилиногена в желчевыводящих путях. В дальнейшем, когда функция печеночных клеток начинает восстанавливаться, желчь выделяется в большом количестве, и уробилиноген снова появляется в больших количествах, что в данной ситуации расценивается как благоприятный прогностический признак. Стеркобилиноген попадает в большой круг кровообращения и выделяется почками с мочой в виде уробилина.

Основные причины паренхиматозных желтух – острые и хронические вирусные гепатиты, цирроз печени, токсические вещества (хлороформ, четыреххлористый углерод, ацетаминофен), массивное распространение в печени раковой опухоли, альвеолярный эхинококк и множественные абсцессы печени. При вирусных гепатитах степень билирубинемии коррелирует с тяжестью заболевания. Так, при легкой форме течения вирусного гепатита В содержание билирубина в сыворотке крови не выше 90 мкмоль/л, при среднетяжелой – в пределах 90–170 мкмоль/л, при тяжелой – свыше 170 мкмоль/л. При развитии печеночной комы уровень билирубина может повышаться до 300 мкмоль/л и выше.

К различным типам гипербилирубинемии (паренхиматозная желтуха) относятся также некоторые редко встречающиеся синдромы – КриглераНайяра, Жильбера, Дабина-Джонсона, Ротора.

При обтурационной желтухе (конъюгированная гипербилирубинемия) нарушается желчевыведение, вследствие закупорки общего желчного протока камнем или опухолью, как осложнение гепатита, при первичном циррозе печени, при приеме лекарств, вызывающих холестаз. Нарастание давления в желчных капиллярах приводит к увеличению проницаемости или нарушению их целостности и попаданию билирубина в кровь. Механическая желтуха обычно приводит к наиболее высокому уровню прямого (конъюгированного) билирубина в крови, величина которого иногда достигает 800–1000 мкмоль/л. В кале резко снижается содержание стеркобилиногена, полная обтурация желчного протока сопровождается полным отсутствием желчных пигментов в кале. Если концентрация конъюгированного (прямого) билирубина превышает почечный порог (13–30 мкмоль/л), то билирубин выделяется с мочой.

В клинической практике определение билирубина в сыворотке крови применяется для решения следующих задач:

- определение увеличенного содержания билирубина в крови в тех случаях, когда при осмотре больного желтуха не выявляется или наличие ее вызывает сомнение. Желтушная окраска кожи наблюдается при уровне содержания билирубина в крови, превышающем 30–35 мкмоль/л.
 - объективная оценка степени билирубинемии;

- дифференциальная диагностика различных видов желтух;
- оценка течения заболевания путем повторных исследований.

Уменьшение содержания билирубина диагностического значения не имеет.

Прямой билирубин.

Референтные величины содержания прямого билирубина в сыворотке 0,0–5,0 мкмоль/л.

Исследование обычно проводится с целью дифференциальной диагностики форм желтух.

При паренхиматозной желтухе наступает деструкция печеночных клеток, нарушается экскреция прямого билирубина в желчные капилляры, и он попадает непосредственно в кровь, где содержание его значительно увеличивается. Кроме того, снижается способность печеночных клеток синтезировать билирубин-глюкурониды; вследствие этого количество непрямого билирубина в крови также увеличивается.

При механической желтухе нарушено желчевыделение, что приводит к резкому увеличению содержания прямого билирубина в крови. Несколько повышается в крови и концентрация непрямого билирубина. При гемолитической желтухе содержание прямого билирубина в крови не изменяется.

Непрямой билирубин.

Референтные величины содержания непрямого билирубина в сыворотке 3,4–13,7 мкмоль/л.

Исследование непрямого билирубина играет важнейшую роль в диагностике гемолитических анемий. В норме в крови 75% общего билирубина приходится на долю непрямого (свободного) билирубина и 25% на долю прямого (связанного) билирубина.

Непрямой билирубин повышается при гемолитических анемиях, пернициозной анемии, при желтухе новорожденных, синдроме Жильбера, синдроме Криглера—Найяра, синдроме Ротора. Повышение непрямого билирубина при гемолитической анемии обусловлено интенсивным образованием его вследствие гемолиза эритроцитов, и печень оказывается неспособной к образованию столь большого количества билирубин-глюкуронидов. При перечисленных синдромах нарушена конъюгация непрямого билирубина с глюкуроновой кислотой.

Ниже приведена патогенетическая классификация желтухи, которая позволяет легко установить этиологию гипербилирубинемии.

Преимущественно непрямая гипербилирубинемия

- 1. Избыточное образование билирубина:
- гемолиз (внутри- и внесосудистый);
- неэффективный эритропоэз.
- 2. Сниженный захват билирубина в печени:
- длительное голодание;

- сепсис.
- 3. Нарушение конъюгации билирубина:
- 3.1 Наследственная недостаточность глюкуронилтрансферазы:
- сидром Жильбера (легкая недостаточность глюкуронилтрансферазы);
- синдром Криглера-Найяра II типа (умеренная недостаточность глюкуронилтрансферазы);
- синдром Криглера-Найяра I типа (отсутствие активности глюкуронилтрансферазы).
- 3.2 Физиологическая желтуха новорожденных (преходящая недостаточность глюкуронилтрансферазы; повышенное всасывание непрямого билирубина).
 - 3.3 Приобретенная недостаточность глюкуронилтрансферазы:
 - прием некоторых препаратов (например, хлорамфеникола).
- желтуха от материнского молока (угнетение активности глюкуронилтрансферазы прегнандиолом и жирными кислотами, содержащимися в грудном молоке).
 - поражение паренхимы печени (гепатиты, цирроз).

Преимущественно прямая гипербилирубинемия.

- 1. Нарушение экскреции билирубина в желчь.
- 1.1 Наследственные нарушения:
- синдром Дабина-Джонсона.
- синдром Ротора.
- доброкачественный рецидивирующий внутрипеченочный холестаз;
- холестаз беременных.
- 1.2 Приобретенные нарушения:
- поражение паренхимы печени (например, при вирусном или лекарственном гепатите, циррозе печени);
- прием некоторых препаратов (пероральные контрацептивы, андрогены, хлорпромазин);
 - алкогольное поражение печени;
 - сепсис;
 - послеоперационный период;
 - парентеральное питание;
 - билиарный цирроз печени (первичный или вторичный).
 - 2. Обструкция внепеченых желчных проходов:
 - 1.1. Обтурация:
 - холедохолитиаз;
- пороки развития желчных путей (стриктуры, атрезия, кисты желчных протоков);

- гельминтозы (клонорхоз и другие печеночные трематодозы, аскаридоз);
- злокачественные новообразования (холангиокарцинома, рак фатерова соска);
 - гемобилия (травма, опухоли);
 - первичный склерозирующий холангит.

2.2 СДавление:

- злокачественные новообразования (рак поджелудочной железы, лимфомы, лимфогранулематоз, метастазыв лимфатические узлы ворот печени);
 - воспаление (панкреатит).

Исследование показателей азотистого обмена.

Для детального анализа состояния азотистого обмена в клинической практике целесообразно определять в крови концентрацию основных составляющих веществ остаточного азота (мочевина, азот аминокислот, мочевая кислота, креатинин, аммиак). При этом на долю мочевины приходится около 50% всего небелкового азота, поэтому уровень мочевины крови в большинстве случаев наиболее адекватно отражает состояние всего азотистого обмена в организме человека.

Мочевина.

Референтные пределы мочевины в сыворотке крови 2–8 ммоль/л. Определение уровня мочевины используется для оценки и мониторинга выделительной функции почек, а также для оценки мочевинообразующей функции печени при печеночной недостаточности различной этиологии.

Причины снижения концентрации мочевины в сыворотке крови:

- диета с низким содержанием белков;
- беременность приводит к увеличению скорости клубочковой фильтрации (СКФ) и, как следствие, к повышению скорости выведения мочевины;
- болезни печени основная причина патологического снижения уровня мочевины в крови.

Причины повышения концентрации мочевины в сыворотке крови:

- 1. внепочечные связаны с повышенным образованием мочевины в организме при нормальной выделительной функции почек продукционная уремия:
 - потребление очень большого количества белковой пищи;
- длительное голодание, которое сопровождается усилением катаболизма белков собственных тканей; возросший распад белков приводит к повышению синтеза мочевины; данная ситуация может также наблюдаться при

различных воспалительных процессах, у тяжелых больных, находящихся в отделении реанимации;

- обезвоживание в результате рвоты, поноса; при дегидратации количество реабсорбированной из почечных канальцев в кровь мочевины (после клубочковой фильтрации) увеличивается;
 - желудочно-кишечные кровотечения из язв;
- варикозно-расширенных вен пищевода, опухолей; кровь попадает в кишечник, в результате всасывание белков (кровь содержит большое количество белка) увеличивается и, следовательно, вызывает активацию синтеза мочевины.

Однако при этих состояниях избыток мочевины быстро удаляется из организма почками и ее концентрация в крови становится нормальной. Повышение уровня мочевины в крови наиболее часто возникает в результате нарушения выделительной функции почек. Уровень мочевины в крови возрастает, если СКФ снижается.

В соответствии с приведенными выше факторами, способствующими снижению СКФ, все причины, определяющие развитие почечной недостаточности, можно разделить на 3 группы:

- преренальные (уменьшение притока крови к почкам);
- ренальные (повреждение собственно почечного фильтра);
- постренальные (затруднение оттока мочи).

Патология, лежащая в основе преренальных механизмов нарушения функции почек, приводит к повышению уровня мочевины в крови и характеризуется низкой СКФ вследствие уменьшения тока крови через почечные клубочки. При этом структура нефрона остается в норме, но нарушается его функция. Причинами преренальной дисфункции почек являются:

- дегидратация и снижение ОЦК: шок, сильное кровотечение, тяжелая диарея, обильная рвота;
- •острая или хроническая сердечно-сосудистая недостаточность; снижение АД или недостаточность сократительной функции миокарда.

Ренальная патология сопровождается низкой СКФ вследствие «блокирования» клубочкого фильтра. Структура нефронов нарушена, и соответственно нарушена их функция. Причинами нарушения функции почек могут быть следующие формы патологии:

- острые и хронические гломерулонефриты (ГН); при остром ГН повышение уровня мочевины наблюдается редко и кратковременно; при хроническом ГН уровень мочевины может колебаться, повышаясь при обострении процесса и снижаясь при его затихании;
- хронические пиелонефриты; повышение уровня мочевины зависит от выраженности нефросклероза и воспалительного процесса в почках;
 - нефросклерозы, вызванные отравлениями токсическими веществами;
- синдром длительного СДавливания (размозжения); уровень мочевины в крови оказывается очень высоким, что объясняется сочетанием задержки выведения мочевины с повышенным распадом белков;

- диабетическая нефропатия;
- гипертоническая болезнь со злокачественным течением;
- подагра;
 - гидронефроз, выраженный поликистоз, туберкулез почки;
- амилоидный или амилоидно-липоидный нефроз; повышение мочевины в крови наблюдается только на поздних стадиях заболевания.

Патология, лежащая в основе постренальных механизмов нарушения функции почек, проявляется низкой СКФ вследствие блокирования мочевыводящих путей. Она возникает при задержке выделения мочи из-за какоголибо препятствия в мочевыводящих путях (камень, опухоль, в частности, аденома или рак предстательной железы).

Значительное и продолжительное повышение уровня мочевины в крови (>10,0 ммоль/л) всегда свидетельствует о поражении почек, более умеренное повышение этого показателя (от 6,5 до 10,0 ммоль/л) является признаком другой патологии.

Необходимо помнить, что нормальная концентрация мочевины в крови не исключает ранней стадии почечного заболевания. Увеличение концентрации мочевины в крови отмечается только при значительном снижении функции почек. Концентрация мочевины в крови не выходит за пределы нормы до тех пор, пока СКФ не становится ниже 40 мл/мин, т.е. менее 50% от нормального значения. При развитии острого повреждения почек концентрация мочевины крови нередко достигает очень высоких величин — 133,2—149,8 ммоль/л.

Креатинин крови и мочи.

Содержание креатинина в крови здоровых людей – величина довольно постоянная и мало зависящая от питания и других внепочечных факторов.

n i			
Референтные величины	гсолержания	креатинина в	сыворотке.
i cocetiiinii betiii iiiinii	і содеришини	. Itpomiliana b	CDIDOPOLICE

Возраст	Содержание креатинина в сыворотке		
	мкмоль/л	мг/дл	
Новорожденные	27-88	0,3-1,0	
Дети до 1-го года	18-35	0,2-0,4	
Дети от 1-го года до 12 лет	27-62	0,3-0,7	
Подростки	44-88	0,5-1,0	
Взрослые: женщины	62-132	0,7-1,4	
мужчины	44-97	0,5-1,1	

Снижение уровня креатинина в крови не имеет, за редким исключением, существенного значения. Его уровень может снижаться при беременности в результате увеличения экскреции креатинина почечными канальцами. При любом заболевании, сопровождаемом существенным снижением мы-

шечной массы (например, мышечная дистрофия), может отмечаться патологическое снижение уровня креатинина в сыворотке крови.

Причины повышения уровня креатинина в крови.

Уровень креатинина в крови, в отличие от мочевины, не повышается при сепсисе, травмах, лихорадочных состояниях, не зависит от степени гидратации организма, повышенного потребления белка.

Определение креатинина широко используется в диагностике и мониторинге заболеваний почек. Креатинин в меньшей степени, чем мочевина, зависит от уровня катаболизма, не реабсорбируется в почках, поэтому в большей мере отражает степень нарушения фильтрационной и выделительной функций почек. В большинстве случаев повышение уровня креатинина в крови – это признак нарушения функций почек.

Гипертиреоз, акромегалия, гигантизм, сахарный диабет, кишечная непроходимость, мышечная дистрофия, обширные ожоги, также могут сопровождаться повышением уровня креатинина в крови.

Определение концентрации креатинина в крови и моче значительно расширяет диагностические возможности оценки функционального состояния почек.

Возраст	Содержание креатинина в сыворотке		
	мг/(кг в сутки)	мкмоль/(кг в сутки)	
Дети до 1-го года	8-20	71-177	
Дети от 1-го года до 12 лет	8-22	71-194	
Подростки	8-30	71-265	
Взрослые: женщины и	11-20	97-177	
мужчины	14-26	124-230	
Взрослые: мужчины и	800-2000	7,1-17,7	
женщины	600-1800	5,3-15,9	

В клинической практике важное значение имеет определение отношения креатинина в моче (Км) к креатинину сыворотки крови (Ккр).

Клиренс эндогенного креатинина (проба Реберга-Тареева).

Концентрация мочевины и креатинина в сыворотке крови отражает СКФ и влияет на нее, однако не позволяет прямо измерить СКФ. Это обусловлено тем, что уровни этих метаболитов в крови не увеличиваются существенно до тех пор, пока почки не теряют свою функцию (образовывать первичную мочу) на 50%. Поэтому концентрации мочевины и креатинина в сыворотке крови являются слабыми индикаторами незначительных нарушений функции почек на ранних стадиях почечных заболеваний. В связи с этим для повышения информативности оценки СКФ в клинической практике определяют клиренс креатинина (проба Реберга–Тареева). Определение клиренса креатинина также имеет некоторые недостатки, тем не менее это довольно адекватный и доступный метод прямого измерения СКФ и следовательно бо-

лее чувствительный и специфичный способ диагностики почечной недостаточности на ранних ее стадиях, чем оценка содержания мочевины и креатинина в крови. Клиренс креатинина — это объем плазмы крови, который очищается от креатинина за 1 минуту при прохождении через почки. Чем эффективнее работают почки по очищению крови от креатинина и выведению его с мочой, тем выше клиренс.

В норме клиренс креатинина, или СКФ, у здоровых людей колеблется от 80 до 160 мл/мин, составляя 120 ± 25 мл/мин у мужчин и 95 ± 20 мл/мин у женщин. При заболеваниях почек величину клиренса креатинина (СКФ) принято считать достаточно корректным критерием оценки массы действующих нефронов, параметра важного, в том числе с позиций клинической фармакологии, поскольку фармакокинетика многих медикаментов зависит от величины этого показателя.

Общепринятой методикой оценки СКФ служит исследование клиренса креатинина (проба Реберга—Тареева). Креатинин, будучи низкомолекулярным веществом, беспрепятственно проходит из крови в состав первичной мочи в процессе клубочковой фильтрации безбелковой плазмы крови. Таким образом, концентрация креатинина в фильтрате, т.е. первичной моче, соответствует его плазматической концентрации — концентрации креатинина в исследуемой сыворотке крови (Ккр). Следовательно, количество креатинина (ммоль/мин), поступающее в фильтрат, соответствует произведению концентрации креатинина в фильтрате на минутный объем фильтрата:

Kкр х V.

Порядок проведения пробы Реберга-Тареева.

Специальной подготовки пациента не требуется. Пациент в течение суток собирает мочу (всю выделенную мочу за 24 ч). Утром он идет в туалет. Обязательно фиксируется это время (нулевое время). Первую утреннюю порцию пациент не собирает (выпускает в унитаз), а собирает все последующие порции точно до этого же времени следующего дня (за сутки в емкость 3 л). По окончании сбора мочу перемешивают, измеряют объем и указывают его в направлении; около 50 мл мочи отливают в отдельную посуду и доставляют в лабораторию. Утром дня окончания сбора мочи у пациента берется венозная кровь для определения концентрации креатинина.

Для получения точных результатов чрезвычайно важно полностью собрать мочу за 24 ч и указать в направлении на исследование, что это суточная моча. Неправильный сбор мочи приведет к ложным результатам.

В лаборатории определяют концентрацию Ккр и Км пациента, а также рассчитывают минутный диурез — Д, исходя из суточного объема мочи, собранного пациентом. Например, за сутки пациент выделил 1350 мл мочи; это количество в мл необходимо разделить на 24 ч, переведенные в минуты — 1440 мин; следовательно, в данном примере минутный диурез составил 0,94 мл/мин. Клиренс креатинина рассчитывают по следующей формуле:

клиренс креатинина =
$$\frac{\text{Км}}{\text{Ккр}} \times \text{Д}$$

Проба Реберга—Тареева может выполняться и за более короткий отрезок времени (например, за 1–2 ч). Однако, проводя исследование клиренса креатинина в более короткий отрезок времени, необходимо учитывать возможность значительной ошибки при сборе небольшого объема мочи из-за неучета «остаточной мочи» в мочевом пузыре, низкого диуреза и аналитической вариации метода определения концентрации креатинина. Для повышения адекватности определения клиренса креатинина желательно добиваться диуреза у обследуемого пациента в объеме не менее 1,5 мл/мин, что обеспечивается дополнительной небольшой водной нагрузкой в объеме 1–2 стаканов воды.

Порядок проведения пробы Реберга—Тареева за короткий промежуток времени. Больной утром мочится, выпивает 200 мл воды, и затем натощак в состоянии полного покоя собирает мочу за точно определенное непродолжительное время (2 ч). Посередине этого отрезка времени берут кровь из вены. При направлении проб в лабораторию для получения правильных результатов определения СКФ в направлении на исследование очень важно указать за какой отрезок времени собрана моча.

В норме величины клубочковой фильтрации наиболее низки утром, повышаются до максимальных величин в дневные часы и вновь снижаются вечером. У здоровых людей снижение СКФ происходит под влиянием тяжелой физической нагрузки и отрицательных эмоций; возрастает после питья жидкости и приема высококалорийной пищи.

Так как определение клиренса креатинина является прямым методом измерения СКФ, его величина снижается при уменьшении СКФ. Уменьшение величины клиренса креатинина по сравнению с нормой свидетельствует о повреждении почек. По уровню снижения клиренса креатинина можно судить о тяжести их поражения, но не о диагнозе, так как СКФ уменьшается при заболеваниях почек разной этиологии. Этот показатель – более чувствительный индикатор ранних стадий почечной дисфункции.

На СКФ оказывают влияние экстраренальные факторы. Так, СКФ снижается при сердечной и сосудистой недостаточности, обильном поносе и рвоте, гипотиреозе, механическом затруднении оттока мочи (опухоли предстательной железы), при поражении печени. В начальной стадии острого ГН снижение СКФ происходит не только вследствие нарушения проходимости клубочковой мембраны, но и в результате системных расстройств гемодинамики. При хроническом ГН снижение СКФ может быть обусловлено также азотемической рвотой и поносом.

Ряд лекарственных препаратов (например, циметидин, триметоприм) снижает тубулярную секрецию креатинина, способствуя повышению его концентрации в сыворотке крови. Антибиотики группы цефалоспоринов,

вследствие интерференции, приводят к ложноповышенному уровню креатинина в сыворотке.

Повышение СКФ наблюдается при хроническом ГН с нефротическим синдромом, в ранней стадии гипертонической болезни; высокие цифры СКФ отмечаются и при нефрозах.

Наряду с определением СКФ в пробе Реберга-Тареева также оценивают состояние канальцевой реабсорбции, которая рассчитывается по формуле:

$$KP = \frac{CK\Phi - \mathcal{I}}{CK\Phi} \times 100$$

В норме канальцевая реабсорбция составляет от 95 до 99% клубочкового фильтрата.

Канальцевая реабсорбция может значительно меняться в зависимости от физиологических факторов, снижаясь до 90% при водной нагрузке. Выраженное снижение реабсорбции происходит при форсированном диурезе, вызванном мочегонными средствами. Наибольшее снижение канальцевой реабсорбции наблюдается у больных несахарным диабетом.

При различных заболеваниях почек периоды (время) возникновения нарушения (снижения) СКФ и канальцевой реабсорбции могут существенно отличаться, что используется для оценки динамики заболеваний.

При острых и хронических ГН, нефросклерозах, когда первично поражается фильтр почечного клубочка, канальцевая реабсорбция снижается позже, чем СКФ, т.е. СКФ, как правило, уменьшается намного раньше, чем происходит снижение концентрационной функции почек и накопление в крови мочевины и креатинина. При первичных клубочковых поражениях недостаточность концентрационной функции почек выявляется при резком снижении СКФ (приблизительно на 40-50%).

При пиелонефритах канальцевая реабсорбция снижается раньше уменьшения СКФ. Это обусловлено тем, что при хронических пиелонефритах первоначально поражается преимущественно дистальный отдел канальцев нефрона, а только затем гломерулярный клубочек, поэтому СКФ уменьшается позже, чем канальцевая реабсорбция.

Мочевая кислота.

Референтные значения мочевой кислоты в сыворотке:

до 14 лет: 120–320 мкмоль/л;

старше 14 лет, мужчины: 210–420 мкмоль/л,

женщины: 150-350 мкмоль/л.

Повышение уровня мочевой кислоты в крови (гиперурикемия) может возникнуть вследствие избыточной продукции мочевой кислоты, нарушения ее экскреции или сочетания этих факторов.

Основные причины, которые приводят к увеличению концентрации мочевой кислоты в плазме крови.

Увеличение образования мочевой	Снижение почечной экскреции мо-
кислоты	чевой кислоты
Первичное	Первичное
Увеличение синтеза пуринов: идио-	Идиопатическое
патическое (неустановленное) на-	
следственное нарушение метаболиз-	
ма	
Вторичное	Вторичное
Избыточное поступление пуринов с	Хроническая болезнь почек.
пищей. Нарушение метаболизма	Увеличение почечной реабсорбции/
АТФ:	уменьшение секреции:
• алкоголь;	• тиазидные диуретики;
• гипоксия тканей.	• салицилаты (низкие дозы);
Увеличение обмена нуклеиновых ки-	• свинец;
слот:	• органические кислоты (например,
• злокачественные новообразования;	молочная кислота, в том числе вслед-
• псориаз;	ствие приема алкоголя)
• цитотоксические препараты;	
• ионизирующее излучение; лучевая	
терапия	

Определение содержания в крови мочевой кислоты имеет особенно большое значение в диагностике бессимптомной гиперурикемии (мочевая кислота в крови у мужчин – выше 480 мкмоль/л, у женщин – выше 350 мкмоль/л) и скрытого развития подагрической почки (у 5% мужчин). У 5–10% больных с бессимптомной гиперурикемией возникает острый подагрический артрит. Примерно у 25% пациентов с симптомами подагры обнаруживают камни мочевой кислоты и 25% пациентов с камнями мочевой кислоты страдают подагрой. Гиперурикемия у пациентов с подагрой непостоянна, может носить волнообразный характер. Периодически содержание мочевой кислоты может снижаться до нормальных цифр, однако часто наблюдается повышение в 3–4 раза по сравнению с нормой.

Во время острого приступа подагры у 39–42% пациентов уровень мочевой кислоты в сыворотке крови снижается до нормальных значений. Поэтому при нормальных значениях мочевой кислоты таким пациентам необходимо повторить анализы крови через 3–5 суток после купирования приступа для получения объективных величин концентрации этой кислоты.

Для получения точных данных о содержании мочевой кислоты в крови, наиболее адекватно отражающих уровень эндогенного образования мочевой кислоты, необходимо в течение 3 дней перед исследованием назначать пациентам малопуриновую диету.

Снижение уровня мочевой кислоты в крови встречается редко, в основном при врожденных нарушениях метаболизма (генетические дефекты синтеза ферментов, участвующих в образовании мочевой кислоты) и дефектах реабсорбции мочевой кислоты в почечных канальцах. Гипоурикемия наблюдается при врожденном дефиците фермента ксантиноксидазы (катализирует превращение гипоксантина в ксантин и ксантина в мочевую кислоту), который сопровождается ксантинурией. Тяжелые заболевания печени, поражения почечных канальцев (например, синдром Фанкони), прием аллопуринола приводят к снижению уровня мочевой кислоты в крови.

Гомоцистеин.

Референтные величины содержания гомоцистеина в сыворотке составляют: у женщин – 5–12 мкмоль/л, у мужчин – 5–15 мкмоль/л.

Высокие уровни гомоцистенна служат важнейшим фактором, определяющим риск развития раннего атеросклероза и тромбоза. Гипергомоцистеинемия встречается у 13-47% больных ИБС. Поэтому в настоящее время определение гомоцистеина в сыворотке крови используется в качестве маркера прогноза исхода ИБС. Высокие уровни гомоцистеина больных ИБС – четкие предвестники острых явлений, которые могут привести к летальному исходу. По степени выраженности гипергомоцистеинемию делят на легкую – уровень гомоцистеина – 15–25 мкмоль/л, умеренную – 25– 50 мкмоль/л и тяжелую – 50–500 мкмоль/л. У больных ИБС с уровнем гомоцистеина в крови ниже 10 мкмоль/л стеноз коронарных артерий обычно менее 50%, при уровне 10-15 мкмоль/л -80%, выше 15 мкмоль/л -90%.

Врожденная гомоцистинурия представляет собой моногенный дефект метаболизма, обусловленный дефицитом метилентетрагидрофолатредуктазы. Пациенты с таким довольно редким заболеванием (1 на 200 000 новорожденных) обычно страдают тяжелой задержкой умственного развития, патологией скелета и ранним развитием атеросклеротической болезни. В сыворотке крови концентрация гомоцистеина очень высокая – от 50 до 500 мкмоль/л.

Гипергомоцистеинемия встречается как одно из проявлений неопластического процесса, в частности при раке молочной железы, яичников и поджелудочной железы, остром лимфобластном лейкозе. Увеличение уровня гомоцистеина в сыворотке крови может отмечаться при гипотиреозе, тяжелом течении псориаза, длительном приеме препаратов теофиллина, эстрогенсодержащих контрацептивов, цитостатиков (метотрексат) и противоэпилептических препаратов (фенитоин, карбамазепин), вследствие нарушения метаболизма и всасывания витамина В12 и фолиевой кислоты.

Исследование показателей углеводного обмена.

Глюкоза крови и мочи.

Концентрация глюкозы в сыворотке крови примерно на 11–14% выше, чем в цельной крови, из-за разведения растворенной в плазме глюкозы форменными элементами крови. Концентрация глюкозы в гепаринизированной плазме на 5% ниже содержания глюкозы в сыворотке. Вследствие утилизации глюкозы в тканях цельная венозная кровь содержит меньше глюкозы, чем капиллярная кровь из пальца (натощак примерно на 0,1 ммоль/л, после приема пищи – на 15–20%, большая разница может быть у пациентов с нарушениями микроциркуляции, например при шоке).

Референтные пределы глюкозы.

Возраст	Глюкоза сыворотки	Глюкоза цельной (капил-
	крови	лярной) крови
	ммоль/л	ммоль/л
Новорожденные	2,8-4,4	2,4-4,1
Дети	3,9-5,8	3,3-5,5
Взрослые	4,0-6,1	3,3-5,5

Определение уровня глюкозы в клинической практике используется для следующих целей:

- диагностики и мониторинга сахарного диабета, диабета беременных, нарушения толерантности к глюкозе;
- выявления и мониторинга нарушений углеводного обмена при недостаточности надпочечников, гипофиза, заболеваниях печени, сепсисе, шоке и других критических состояниях;
- скрининг нарушений углеводного обмена в группах риска развития сахарного диабета (ожирение, возраст старше 45 лет, сахарный диабет 1-го типа в семейном анамнезе);
 - дифференциальной диагностики комы (гипо- и гипергликемической).

Увеличение концентрации глюкозы (гипергликемию) вызывают:

- умеренная физическая нагрузка;
- эмоциональный стресс, боль;
- сахарный диабет;
- увеличение продукции гипергликемических гормонов (феохромоцитома, тиреотоксикоз, акромегалия, гигантизм, синдром Кушинга);
- снижение продукции инсулина при заболеваниях поджелудочной железы (острый и хронический панкреатит, опухоли поджелудочной железы);
- травма, опухоли, операционные повреждения головного мозга, кровоизлияние в мозг.

Уменьшение концентрации (гипогликемию) вызывают:

- передозировка гипогликемических препаратов, инсулина; • повышение продукции инсулина (аденома или карцинома β-клеток островков Лангерганса – инсулинома);
- снижение продукции гипергликемических гормонов (недостаточность α-клеток островков Лангерганса, болезнь Аддисона, адреногенитальный синдром, гипопитуитаризм, гипотиреоз);
- ослабление гликогенной функции печени при циррозе, тяжелых гепатитах разной этиологии, первичном раке печени, гемохроматозе, алкогольной интоксикации;
- ферментопатии (болезнь Гирке, галактоземия, нарушенная толерантность к фруктозе);
 - длительное голодание;
 - синдром мальабсорбции;
 - интенсивная физическая нагрузка;
 - лихорадочные состояния.

Диагностические критерии сахарного диабета и других категорий гипергликемии, рекомендованные ВОЗ (1999).

Диагноз	Момент взя-	Цельна	я кровь	Плазма ве-
	тия пробы	Венозная	Капиллярная	нозной кро-
				ВИ
Норма	Натощак	3,3 – 5,5	3,3 – 5,5	4,0 – 6,1
	Через 2 ч после нагрузки глюко- зой	<6,7	<7,8	<7,8
Нарушение толерантности к глюкозе	Натощак	<6,1	<6,1	<7,0
	Через 2 ч после нагрузки глюко- зой	≥6,7 и <10,0	≥7,8 и <11,1	≥7,8 и <11,1
Сахарный диабет	Натощак	≥6,1	≥6,1	≥7,0
	Через 2 ч после нагрузки глюко- зой	≥10,0	≥11,1	≥11,1

Глюкоза в моче.

Референтные пределы: менее 0,08 ммоль/сутки (большинство тестсистем нечувствительны к такой концентрации и дают отрицательный результат).

Определение глюкозы в моче используется для следующих целей:

• мониторинга сахарного диабета беременных, нарушения толерантности к глюкозе;

• диагностики и мониторинга почечного диабета, патологий почек с нарушением канальцевой реабсорбции.

С мочой глюкоза в норме не выводится, поскольку после фильтрации в почечных клубочках полностью реабсорбируется в проксимальных канальцах. При гипергликемии выше 9–10 ммоль/л (почечный порог для глюкозы) развивается глюкозурия. Глюкозурия не является диагностическим критерием сахарного диабета, поскольку экскреция глюкозы с мочой зависит не только от уровня гликемии, отражающей инсулярную функцию, но и от функционирования почек - способности почечных канальцев реабсорбировать глюкозу, скорости клубочковой фильтрации. Глюкозурия на фоне нормогликемии может развиваться при некоторых заболеваниях почек из-за снижения почечного порога, а также во время нормальной беременности изза того, что физиологическое повышение клубочковой фильтрации неадекватно абсорбционной способности канальцев. Одним из критериев компенсации сахарного диабета 2-го типа является аглюкозурия, при сахарном диабете 1го типа допускается потеря глюкозы с мочой 20-30 г/сут. При диабетическом гломерулосклерозе почечный порог для глюкозы возрастает, поэтому глюкозурия не развивается даже при выраженной гипергликемии.

Увеличение экскреции глюкозы (глюкозурия) связано:

- с гипергликемией при сахарном диабете, гипертиреозе, стероидном диабете, синдроме Кушинга, феохромоцитоме, заболеваниях іюджелудочной железы и других состояниях;
- со снижением почечного порога для глюкозы при тубулоинтерстициальных поражениях почек любой этиологии, врожденных тубулопатиях.

На уровень глюкозы в моче оказывает влияние (в сторону повышения) прием глюкокортикоидов, нестероидных противовоспалительных препаратов, некоторых диуретиков.

К тестам, которые используются в диагностике и мониторинге патологии углеводного обмена, относятся определение уровня гликозилированного гемоглобина, фруктозамина, а также альбумина в моче (тест на микроальбуминемию).

Гликозилированный гемоглобин.

Гликозилированный (или гликированный) гемоглобин (HbA1c) образуется в результате неферментативной реакции между гемоглобином А, содержащимся в эритроцитах, и глюкозой сыворотки крови. Для определения уровня HbA1 необходима цельная венозная кровь, взятая с антикоагулянтом.

Референтные величины содержания HbA1c в крови составляют 4,0-5,2% от общего гемоглобина.

Степень гликозилирования гемоглобина (а, следовательно, его концентрация) зависит от концентрации глюкозы в крови и от длительности контакта глюкозы с гемоглобином (срока жизни эритроцита). Эритроциты, циркулирующие в крови, имеют разный возраст, поэтому для усредненной характеристики уровня связанной с ними глюкозы ориентируются на полупериод жизни эритроцитов — 60 сут. Существуют три варианта гликозилированного

гемоглобина: HbAla, HbAlb, HbAlc, но только вариант HbAlc количественно преобладает и дает более тесную корреляцию со степенью выраженности сахарного диабета.

Исследование концентрации глюкозы в крови недостаточно для эффективного мониторинга лечения сахарного диабета. Определив уровень глюкозы в крови, можно оценить текущий (сиюминутный) уровень глюкозы, который может зависеть от: 1) приема (или неприема) пищи; 2) ее состава, 3) физических нагрузок и их интенсивности, 4) эмоционального состояния пациента, 5) времени суток. Поэтому при исследовании только текущего уровня глюкозы в крови высока вероятность того, что ее значения не будут отражать действительную степень компенсации сахарного диабета, а это может привести либо к передозировке лекарственных препаратов, либо к неоправданному уменьшению дозировки. Ценность определения НЬА1с состоит в том, что он характеризует средний уровень глюкозы в крови на протяжении длительного промежутка времени, т.е. действительную степень компенсации сахарного диабета на протяжении последних 1–2 месяцев.

В целом определение HbA1c дает усредненное, интегрированное представление об уровне гликемии при всех формах сахарного диабета.

Взаимосвязь между концентрациями глюкозы в крови и уровнем HbA1c.

Уровень НЬА1с	Концентрация глюкозы в крови		
-	ммоль/л	мг/дл	
4,0	2,6	50	
5,0	4,7	80	
6,0	6,3	115	
7,0	8,2	150	
8,0	10,0	180	
9,0	11,9	215	
10,0	13,7	250	
11,0	15,6	280	
12,0	17,4	315	
13,0	19,3	350	
14,0	21,1	380	

Результаты исследования HbA1c оценивают следующим образом: 4–6% свидетельствует о хорошей компенсации сахарного диабета в последние 1–2 месяца, 6,2–7,5% – удовлетворительный уровень, выше 7,5% – неудовлетворительный уровень. Для оценки эффективности лечения целесообразно повторить исследование через 2–3 мес.

Уровень HbA1с не зависит от времени суток, физических нагрузок, приема пищи, назначенных лекарственных средств, эмоционального состояния пациента.

Ложные сниженные значения HbA1c имеют место при уремии, острых и хронических геморрагиях, а также при состояниях с уменьшением длительности жизни эритроцитов (например, при гемолитической анемии).

Фруктозамин.

Референтные величины содержания фруктозамина в сыворотке – 205–285 мкмоль/л.

Фруктозамин представляет собой продукт необратимого гликозилирования белков плазмы крови. Степень гликозилирования белков плазмы зависит от концентрации глюкозы в крови и длительности периода полураспада белков. Количество фруктозамина в крови служит хорошим показателем для ретроспективного контроля за содержанием глюкозы в крови у пациентов с сахарным диабетом и позволяет оценивать эффективность проводимого лечения без отягощающего больного ежедневного контроля за уровнем гликемии в крови.

В отличие от HbA1c, фруктозамин отражает средний уровень глюкозы в крови за 2-3 нед. до измерения. Это обусловлено периодом полураспада гликозилированных белков, для альбумина он составляет 20 дней, тогда как для гемоглобина он определен длительностью полураспада эритроцитов (60 дней). При оценке результатов исследования фруктозамина как критерия компенсации сахарного диабета, считают, что при содержании его в крови от 280 до 320 мкмоль/л компенсация удовлетворительная, выше 320 мкмоль/л – декомпенсация.

Альбумин в моче (микроальбуминурия).

Микроальбуминурия – это экскреция альбумина с мочой, превышающая допустимые нормальные значения, но не достигающая степени протеинурии. В норме экскретируется не более 30 мг альбумина в сутки, что эквивалентно концентрации альбумина в моче менее 20 мг/л при ее разовом анализе. При появлении протеинурии экскреция альбумина с мочой превышает 300 мг/сут. Поэтому диапазон колебаний концентрации альбумина в моче при микроальбуминурии составляет от 30 до 300 мг/сут или от 20 до 200 мкг/мин.

Исследование на микроальбуминурию используют для скрининга поражения почек и необходимости лечения диабетической нефропатии. Своевременное начало лечения нефропатии существенно снижает затраты и улучшает прогноз в отношении развития почечной недостаточности. Если в суточной моче концентрация альбумина выше 30 мг и эти значения повторяются несколько раз, необходимо проводить лечение, так как данные изменения характерны для начинающейся диабетической нефропатии.

Классификация видов альбуминурии.

Вид	Экскреция альбумина с мочой		Концентрация
альбуминурии	При одноразовом сборе мочи (утренняя порция), мкг/мин	За сутки, мг	альбумина в моче мг/л
Нормоальбуминурия	Менее 20	Менее 30	Менее 20
Микроальбуминурия	20-200	30-300	20-200
Макроальбуминурия	Более 200	Более 300	Более 200

В настоящее время тест на микроальбуминурию необходимо рассматривать как показатель оценки функции плазматических мембран высокодифференцированных клеток. В норме отрицательно заряженный альбумин не проходит через гломерулярный фильтр почек, прежде всего вследствие наличия высокого отрицательного заряда на поверхности эпителиальных клеток. Этот заряд обусловлен структурой фосфолипидов клеточных мембран. Снижение количества двойных связей в ацильных остатках фосфолипидов уменьшает отрицательный заряд, и альбумин начинает фильтроваться в первичную мочу в повышенном количестве. Все эти изменения возникают при развитии атеросклероза, поэтому микроальбуминурия наблюдается у пациентов с генетическими формами дислипопротеинемии, у пациентов с ИБС, эссенциальной гипертензией, у 10% практически здоровых людей при скрининговых исследованиях и у пациентов с нарушением толерантности к глюкозе. Так как изменение структуры фосфолипидов плазматических мембран высокодифференцированных клеток развивается при атеросклерозе и немедленно сказывается на заряде мембран, микроальбуминурия представляет собой тест раннего определения заболевания.

Конечный уровень знаний.

- 1. В сыворотке крови в отличие от плазмы отсутствует:
- 1) фибриноген
- 2) альбумин
- 3) комплемент
- 4) калликреин
- 5) антитромбин

2. Понятие «абсорбция» в фотометрии идентично понятию:

- 1) отражение
- 2) пропускание
- 3) рассеивание
- 4) оптическая плотность
- 5) тушение

3. Биохимические анализаторы позволяют:

- 1) повысить производительность работы в лаборатории
- 2) проводить исследования кинетическими методами
- 3) расширить диапазон исследований
- 4) выполнять сложные виды анализов
- 5) все_перечисленное

4. К методам срочной лабораторной диагностики следует отнести определение:

- 1) активности кислой фосфатазы
- 2) белковых фракций
- 3) опухолевых маркеров
- 4) общего холестерина
- 5) билирубина у новорожденных

5. Усиливают анаболизм белков:

- 1) тироксин
- 2) глюкокортикоиды
- 3) СТГ, половые гормоны
- 4) инсулин
- 2) паратгормон

6. К белкам плазмы относят

- 1) кератины
- 2) эластин
- 3) глобулины
- 4) склеропротеины
- 5) коллагены

7. Определение альфа-фетопротеина имеет диагностическое значение при:

- 1) эхинококкозе печени
- 2) первичном раке печени
- 3) инфекционном гепатите
- 4) 4 раке желудка
- 5) 5 осложненном инфаркте миокарда

8. К клеткам, продуцирующим гамма-глобулины, относятся:

- 1) плазматические клетки
- 2) моноциты
- 3) базофилы
- 4) макрофаги
- 5) тромбоциты

9. Фибриноген снижается в крови при:

1) инфаркте миокарда

- 2) циррозе печени
- 3) ревматизме
- 4) уремии
- 5) остром воспалении

10. Парапротеины появляются в крови при:

- 1) болезни Вальденстрема
- 2) миеломе
- 3) болезни тяжелых цепей
- 4) болезни легких цепей
- 5) всех перечисленных заболеваниях

11. Трансферрин - это соединение апо-ферритинас:

- 1) шинком
- 2) железом
- 3) натрием
- 4) кобальтом
- 5) калием

12. Содержание креатинина в крови увеличивается при:

- 1) хронической почечной недостаточности
- 2) гепатите
- 3) гастрите
- 4) язвенном колите
- 5) всех перечисленных состояниях

13. Определение клиренса эндогенного креатинина применимо для:

- 1) оценки секреторной функции канальцев почек
- 2) определения концентрирующей функции почек
- 3) оценки количества функционирующих нефронов
- 4) определения величины почечной фильтрации
- 3) ни для одной из перечисленных задач

14. Мочевая кислота повышается в сыворотке при:

- 1) гастрите, язвенной болезни
- 2) гепатитах
- 3) лечении цитостатиками
- 4) эпилепсии, шизофрении
- 5) всех перечисленных заболеваниях

15. Основная физиологическая роль гаптоглобина:

- 1) связывание гемоглобина
- 2) антипротеолитическая активность
- 3) участие в реакции иммунитета

- 4) участие в свертывании крови
- 5) все перечисленное верно

16. Гипогаммаглобулинемия наблюдается при:

- 1) лимфосаркоме
- 2) миеломной
- 3) облучении
- 4) длительных хронических заболеваниях
- 5) при всех перечисленных состояниях

17. Наиболее выраженное повышение С-реактивного белка наблюдается при:

- 1) вирусных инфекциях
- 2) склеродермии
- 3) бактериальных инфекциях
- 4) лейкемии
- 5) все перечисленное верно

18. Гипоальбуминемия наблюдается при:

- 1) циррозе печени
- 2) кровотечении
- 3) гипертиреоидозе
- 4) нефротическом синдроме
- 5) все перечисленное верно

19. Альфа-1 - антитрипсин– это:

- 1) белок острой фазы
- 2) ингибитор сериновых протеиназ
- 3) ингибитор лейкоцитарной эластазы
- 4) все перечисленное верно
- 5) все перечисленное неверно

20. Всасывание углеводов происходит главным образом в:

- 1) ротовой полости
- 2) желудке
- 3) тонкой кишке
- 4) толстой кишке
- 5) все перечисленное верно

ТЕМА: СИСТЕМА ГЕМОСТАЗА.

Основные вопросы темы.

- 1) Функции системы гемостаза в организме
- 2) Виды гемостаза
- 3) Составляющие элементы первичного гемостаза
- 4) Роль тромбоцитов в гемостазе
- 5) Характеристика коагуляционного гемостаза. Плазменные факторы коагуляции
- 6) Основные компоненты фибринолитической системы
- 7) Методы исследования сосудисто-тромбоцитарного гемостаза
- 8) Методы исследования коагуляционногогемостаза. Методы оценки коагуляционного гемостаза
- 9) Понятие о протромбиновом времени. Способы выражения ПТВ
- 10) Методы определения фибриногена

Актуальность темы.

Гемостаз — это функция организма, обеспечивающая, с одной стороны, сохранение крови в кровеносном русле в жидком агрегатном состоянии, а с другой стороны — остановку кровотечения и предотвращение кровопотери при повреждении кровеносных сосудов.

Система гемостаза включает в себя:

- 1.Сосудисто-тромбоцитарный гемостаз (первичный).
- 2. Коагуляционный гемостаз (вторичный).
- 3. Фибринолиз.

Составляющие элементы первичного гемостаза:

А. Сосуды и ткани:

- Сосуды различного калибра спазмируются в ответ на выделение сосудосуживающих субстанций, таких как серотонин, адреналин, норадреналин и др.;
- эндотелий сосудов в неповрежденном виде обладает антикоагуляционными свойствами (гепариноиды на поверхности эндотелия), а при повреждении становится мощным прокоагулянтом.

Б. Морфологические элементы крови:

- тромбоциты;
- эритроциты;
- лейкоциты.

Роль тромбоцитов в гемостазе:

- на поверхности тромбоцитов происходит большинство реакций плазменного гемостаза;
- адгезия тромбоцитов способность активированных тромбоцитов прилипать к стенке сосуда на месте повреждения;

• агрегация тромбоцитов – способность их прилипать друг к другу с образованием агрегатов.

Роль тромбоцитов в гемостазе:

- на поверхности тромбоцитов происходит большинство реакций плазменного гемостаза;
- адгезия тромбоцитов способность активированных тромбоци тов прилипать к стенке сосуда на месте повреждения;
- агрегация тромбоцитов способность их прилипать друг к другу с образованием агрегатов.

Коагуляционный гемостаз.

Коагуляционный гемостаз обеспечивается протеолитической активацией плазменных факторов, в результате из растворимого белка фибриногена образуется нерастворимый фибрин. Ключевой реакцией гемостаза является генерация тромбина.

Плазменные факторы коагуляции:

 Φ актор I (фибриноген) – белок, который синтезируется в печени.

Концентрация фибриногена в крови составляет 2-4 г/л. Уменьшение концентрации менее 1 г/л угрожает пациенту кровотечением.

Фактор II (протромбин) — гликопротеид, синтезируется в печени. Для синтеза этого фактора необходим витамин К. В результате воздействия на него мультиферментного комплекса протромбиназы образуется ключевой фермент гемостаза — тромбин.

Фактор III (тканевой фактор) — рецепторный белок мембраны клеток, находится во всех органах и тканях организма, в том числе и эндотелии сосудов. Является рецептором для VII фактора и обеспечивает активацию гемостаза.

 Φ актор IV (кальций) — участвует во всех этапах плазменного гемостаза.

 Φ актор V (проакцелерин) — синтезируется в печени, принимает участие в активации протромбина, являясь частью мультиферментного комплекса протромбиназы. При недостатке развивается парагемофилия.

Фактор VI / VII (проконвертин/конвертин) — витамин К зависимый белок, синтезирующийся в печени. Около 1% циркулирует в крови в активной форме VIIa. VIIa на поверхности поврежденного эндотелия образует комплекс с тканевым фактором, который в свою очередь активирует фX, таким образом обеспечивая генерацию микроколичеств тромбина, что играет ключевую роль в усилении процесса свертывания крови.

Факторы VIII, IX, XI – антигемофильные факторы. Активированные факторы VIIIа и IXа на фосфолипидной поверхностимембран образуют теназный комплекс, который образует главный компонент протромбиназы – фактор Xa.

 Φ актор X (фактор Стюарта) — является ключевым энзимом протромбиназы, которая трансформирует протромбин в тромбин.

Фактор XII (фактор Хагемана) — фактор контакта. Дефицит этого фактора обычно клинически не проявляется.

Фактор XIII (фибринстабилизирующий фактор). Образует Д=Д связи в нестабильном полимере фибрина, что стабилизирует последний.

Основные компоненты фибринолитической системы.

- 1. *Плазминоген* это профермент из которого образуется фибринолитический энзим плазмин.
- 2. *Активаторы плазминогена* превращают плазминоген в плазмин:
- тканевой активатор плазминогена (ТПА) является главным активатором в плазме;
- урокиназный активатор плазминогена (УПА) является главным активатором в тканях.
 - 3.Ингибиторы активаторов плазминогена (ИАП):
 - ИАП1 образуется в эндотелии сосудов;
 - ИАП2 образуется в плаценте.
- 4. *Ингибиторы плазмина:* α 2-антиплазмин, α 2-макроглобулин и α 1-антитрипсин.
- 5. **Рецепторы урокиназного активатора плазминогена** обеспечивает протекание фибринолиза в тканях.
 - 6.Рецептор плазминогена.
 - 7. Тромбин-активируемый ингибитор фибринолиза (TAFI).

Методы исследования сосудисто-тромбоцитарного гемостаза.

1. Определение времени кровотечения.

Многочисленные модификации теста основаны на точном измерении длительности кровотечения из ранки на мочке уха, дистальной фаланги пальца руки или верхней трети ладонной поверхности предплечья.

Метод Дьюке.

Стерильным скарификатором или плоским ланцетом прокалывают нижний валик мочки уха (глубина прокола 3,5-4 мм) и включают секундомер. Предварительно мочку уха согревают. Выступающие кап ли крови каждые 30 с промокают фильтровальной бумагой, не прикасаясь к ранке. В момент, когда новые капли крови не образуются, выключают секундомер и определяют общую длительность кровотечения, а также оценивают размеры капель.

В норме время кровотечения по Дьюку не превышает 4 мин. Его увеличение наблюдается при выраженных тромбоцитопениях или/и тяжелых нарушениях их функции (тромбоцитопатиях). Следует помнить также, что у 60% больных с этой патологией тест оказывается отрицательным.

Метод Айви.

Несколько более чувствительным является тест Айви, когда оценивают время кровотечения из надрезов на коже ладонной поверхности верхней трети предплечья на фоне искусственного повышения венозного давления с поманжеты ДЛЯ определения АД, поддерживают давление 40 мм рт. ст. По ходу предплечья приклады вают соответствующий шаблон и скальпелем делают два надреза дли ной 9 мм и глубиной 1 мм. Засекают время. Не касаясь надрезов, осторожно фильтровальной бумагой кровь каждые остановки кровотечения в обеих ранках. Рассчитывают среднее время по двум надрезам. В норме время кровотечения по Айви не превышает 7 минут.

2. Подсчет количества тромбоцитов.

В настоящее время используется три метода подсчета тромбоцитов в крови:

- В камере Горяева;
- в мазках крови;
- автоматический метод.

Подсчет в камере Горяева. Является самым точным, но достаточно трудоемким. Подсчет тромбоцитов в 1 л проводится по стандартной методике с учетом разведения крови и объема большого квадрата счетной сетки Горяева с применением фазово-контрастного микроскопа для лучшего контрастирования тромбоцитов.

Исследуемую кровь разводят в 200 раз раствором аммония ок салата или раствором, содержащим натрия хлорид, фурациллин и дистиллированную воду. Разведенную кровь перемешивают и оставляют на 30 минут для гемолиза эритроцитов. Затем заполняют камеру Горяева и подсчитывают тромбоциты в 25 больших квадра тах.

Подсчет в мазках крови. Метод основан на подсчете числа тромбоцитов на 1000 эритроцитов с последующим пересчетом на 1 л крови. Кровь смешивают с раствором магнезии сульфата или ЭДТА. Мазки готовят на предметных стеклах и окрашивают их по Романовскому-Гимзе. В каждом поле зрения микроскопа подсчитывают число эритроцитов и тромбоцитов, передвигая мазок до тех пор, пока не будут просчитаны 1000 эритроцитов. Зная число эритроцитов в 1 л крови, рассчитывают количество тромбоцитов в этом объеме.

Автоматический метод. Данный метод с использованием современных анализаторов значительно облегчает и ускоряет исследование, в связи с чем находит все большее распространение в клинической практике.

3. Оценка агрегации тромбоцитов.

Определение агрегационной способности тромбоцитов можно выполнить с помощью следующих методов:

Качественные методы (общее ориентировочное представление об агрегационной активности) основанны на визуальном определении тромбоци-

тарных агрегатов, образующихся при смешивании тромбоцитарной плазмы с различными, чаще естественными, стимуляторами агрегации:

- в пробирке макроскопический способ;
- на предметном стекле микроскопический способ.

В качестве стимуляторов агрегации используют растворы АДФ, тромбина, адреналина, коллагена, ристомицина. Регистрируют время образования крупных агрегатов тромбоцитов, которое в норме обычно не превышает 10-60 c.

Количественная фотометрия — это регистрация процесса агрегации с помощью агрегометров (наиболее полная оценка агрегационной способности тромбоцитов). Метод заключается в графической регистрации изменения оптической плотности тромбоцитарной плазмы при перемешивании ее со стимуляторами агрегации.

Образование тромбоцитарных агрегатов ведет к увеличению светопропускающей способности тромбоцитарной плазмы.

Полученные при этом агрегатограммы анализируют по не скольким количественным параметрам:

- 1. Времени начала агрегации после добавления соответствующего стимулятора.
- 2. Амплитуде агрегатограммы на 2-й и 6-й минутах исследования.
 - 3. Общей площади агрегатограммы.

В зависимости от используемого стимулятора и его дозы агрегатограмма может иметь различную форму:

- при использовании в качестве стимуляторов агрегации тромбоцитов коллагена, тромбина, ристомицина регистрируют одну большую волну агрегации;
- ullet при добавлении к тромбоцитарной плазме малых доз АДФ двухволновую агрегатограмму.

Отсутствие на агрегатограммах, полученных при использовании в качестве стимулятора малых доз АДФ, второй волны агрегации свидетельствутромбоцитах ет об уменьшении В гранул, содержащих (недостаточность биологически активные вещества пула хранения), или о нарушении реакции высвобождения этих веществ из тромбоцитов.

Методы исследования коагляционного гемостаза.

В основе большинства лабораторных тестов оценки плазменного звена гемостаза лежит клотинговый метод.

Принцип всех клотинговых тестов основан на определении времени образования фибринового сгустка (*clot* – сгусток) после добавления в исследуемую плазму ионов кальция и активатора того этапа коагуляционного гемостаза который нас интересует.

Методы оценки коагуляционного гемостаза **АЧТВ** (активированное частичное тромбопластиновое время).

АЧТВ используется как скрининговый тест для оценки внутреннего пути активации коагуляционного гемостаза, скрининговой диагностики волчаночного антикоагулянта и мониторинга за антикоагулянтным действием гепарина.

Метод основан на измерении времени свертывания бестромбоцитарной плазмы добавлении нее оптимального количества каолина, что обеспечивает хлорида или стандартизацию кальция факторов свертывания. активизации Реагент ДЛЯ контактной содержит контактный активатор (суспензия каолина) и фосфолипиды (кефалин). Контакт плазмы частицами каолина стимулирует cпродукцию активного фактора XII (XIIa), предоставляя поверхность для функционирования высокомолекулярного кининогена, калликреина и фактора XIIa. Фосфолипиды необходимы для образования комплексов с активным фактором X (Xa) и протромбином.

После определённого времени инкубации в реакционную смесь добавляется хлорид кальция. Тем самым имитируется запуск свертывания по внутреннему пути и выявляется возможный дефицит факторов, участвующих в нем, либо наличие ингибиторов свертывания.

Укорочение АЧТВ иногда определяется у больных с тромбофилией. Это может быть связано с резистентностью фактора V к активному протеину C,

повышенным уровнем фактора VIII или активированных факторов свертывания. Однако чаще всего укорочение АЧТВ объясняется нарушениями работы с кровью на преаналитическом этапе.

Удлинение АЧТВ происходит при:

- врожденном или приобретенном дефиците факторов II, V, VIII, IX, X, XI, XII, прекалликреина, снижении активности ф-VIII на фоне болезни Виллебранда;
- лечении гепарином, гирудином или апротинином (ингибитор контактной фазы коагуляции);
 - присутствии в крови ПДФ, волчаночного антикоагулянта;
 - нарушении функции печени;
 - коагулопатии потребления (ДВС-синдром);
 - тяжелой дисфибриногенемии или афибриногенемии.

Протромбиновое время (ПТВ).

Протромбиновое время — широко используемый скрининговый тест для оценки внешнего пути активации коагуляционного гемостаза. ПТВ обычно используется для определения активности фактора VII и контроля за лечением непрямыми антикоагулянтами.

ПТВ представляет собой коагуляционный тест, в котором определяют время свёртывания плазмы пациента после добавления к ней смеси тканевого тромбопластина и ионов кальция, что приводит к за пуску свертывания по внешнему пути.

ПТВ удлиняется при: дефиците факторов VII, X, V, протромбина и фибриногена, в том числе при тяжелых заболеваниях печени, наличии аутоантител против факторов свертывания.

Существует несколько способом выражения ПТВ:

- **Протромбиновый индекс** (**ПТИ**) = ПВстандартной плазмы/ ПВпациента (0,8-1,2). Увеличение свидетельствует о гиперкоагуляции, а уменьшение о гипокоагуляции.
- *Протромбиновое отношение* (*ПО или PR*) = ПВпациента /ПВстандартной плазмы (0,94-1,1).
- *Международное нормализованное отношение (МНО или INR)*, которое рассчитывается следующим образом:

$MHO = \Pi O^{MUY}$

МИЧ (ISI) — международный индекс чувствительности, соотносящий активность тканевого фактора из животных источников со стандартом тканевого фактора у человека (рекомендуемое ВОЗ значение МИЧ до 1,2).

Тромбиновое время (ТВ).

Метод заключается в определении времени свертывания плазмы при добавлении в нее раствора стандартного тромбина, который обладает способностью индуцировать превращение фибриногена в фибрин без участия других факторов свертывания крови.

Определение тромбинового времени позволяет оценить конечный этап коагуляционного гемостаза (фибринообразование). ТВ зависит от концентрации фибриногена, его свойств и наличия в крови ингибиторов тромбина (гепарин, антитромбин III). Определение ТВ используют в целях выявления дисфибриногенемий и оценки антикоагулянтной активности крови.

Пролонгированное ТВ наблюдается при значительном снижении 0.5 фибриногена (менее Γ/Π), уровня крови наличии продуктов деградации фибрина, В TOM числе при ДВС-синдроме, тромболитической терапии присутствии В крови ИЛИ аномальных форм фибриногена (при врожденной патологии и вследствие заболеваний печени).

Присутствие антикоагулянтов прямого действия, в частности гепарина, также вызывает удлинение тромбинового времени (комплекс гепарин-антитромбин нейтрализует добавленный тромбин). Антикоагулянты непрямого действия не влияют нарезультаты теста. Удлинение тромбинового времени, помимо этого, может быть связано с присутствием аутоантител к тромбину или наличием в плазме парапротеинов, которые препятствуют полимеризации мономеров фибрина.

Удлинение тромбинового времени наблюдается при:

- гипофибриногенемии (менее 0,5 г/л);
- дисфибриногенемии (наследственные, приобретенные);

- повышенном содержании в крови продуктов деградации фибрина (ДВС-синдром; фибринолитическая терапия);
- присутствии в крови антикоагулянтов прямого действия (гепарина, гирудина, синтетических антитромбинов);
 - парапротеинемии.

Укорочение тромбинового времени может произойти при:

- повышенном риске тромбообразования (І-я стадия ДВС-синдрома);
- значительном повышении концентрации фибриногена в крови.

Фибриноген.

Фибриноген представляет собой белок, синтезирующийся в печени и являющийся предшественником фибрина. Определение концентрации фибриногена в плазме крови является один из рутинных тестов коагулограммы.

Методы определения.

Определение по Клауссу.

Определение фибриногена по Клауссу считается наиболее адекватным тестом, выполняется на коагулометрах. Оно основано на определении времени образования сгустка при добавлении высокой концентрации тромбина к разбавленной в 10-20 раз плазме. При этом логарифм времени образования сгустка прямопропорционален логарифму концентрации фибриногена. Если время свертывания очень короткое (<5 с), то тест проводится с использованием разведенной плазмы. Гепарин не оказывает влияния на результаты определения.

Гравиметрический метод.

Принцип данного метода заключается в высушивании и взвешивании сгустка, который образуется при добавлении к плазме 0,2 мл стандартного раствора тромбина.

Турбидиметрический метод.

При этом определение фибриногена осуществляется по изменению мутности плазмы с использованием батроксомбина. Метод широко используется при автоматических вариантах определения фибриногена.

Иммунохимические методы.

Методы из данной группы основаны на турбидиметрическом или нефелометрическом способе регистрации, использовании поликлональных антител и адаптированы к иммунохимическим анализаторам. Как правило, для каждого иммунохимического анализатора применяется специфический тестнабор на фибриноген. Недостатком данных методов является то, что они не дифференцируют нативный фибриноген и продукты его деградации. Это особенно важно при ведении больных, которым проводится тромболитическая терапия, при обширных тромбозах и ДВС-синдроме, когда происходит значительное увеличение в плазме ПДФ.

Клиническое значение:

Фибриноген - острофазный белок. Его концентрация увеличивается при тяжелых бактериальных инфекциях, травмах и тромбозах. К значительному росту уровня фибриногена приводят заболевания почек (пиелонефрит, гломерулонефрит, гемолитикоуремический синдром), коллагенозы (ревмато-идный артрит, узелковый периартериит), ночная пароксизмальная гемоглобинурия, новообразования (рак легких). При атеросклерозе наблюдается устойчивое увеличение фибриногена, трудно корригируемое лекарственными препаратами. Риск развития сердечно-сосудистых заболеваний при этом повышается пропорционально росту его уровня. Повышение концентрации фибриногена в плазме крови больных сердечно-сосудистыми заболеваниями предшествует развитию инфаркта миокарда и инсульта. Корреляция между уровнем данного белка и развитием этих осложнений особенно четко прослеживается у пациентов молодого возраста. Определение уровня фибриногена является одним из наиболее чувствительных тестов для выявления бессимптомных стадий поражения периферических сосудов.

Дисфибриногенемия представляет собой относительно часто встречающееся состояние, причем оно может определяться несколькими мутациями, одни из которых не сопровождаются, а другие сопряжены с кровотечениями.

Снижение концентрации фибриногена в плазме наблюдается при:

- врожденном дефиците;
- печеночно-клеточной недостаточности;
- ДВС-синдроме;
- острых фибринолитических состояниях;
- поражениях костного мозга (лейкоз, опухолевые метастазы).

Референтные значения:

 $2-4 \Gamma/\Pi$.

Определение высокомолекулярных производных фибриногена.

Наиболее важными в практическом отношении высокомолекулярными производными фибриногена являются:

1) Растворимые фибрин-мономерные комплексы (РФМК).

Они представляет собой высокомолекулярные растворимые комплексы фибрин-мономера с фибриногеном и с продуктами расщепления фибриногена/фибрина. В норме РФМК не обнаруживаются. Их появление в плазме свидетельствует о нарушении процесса нормальной полимеризации фибринмономеров.

2) *Продукты деградации фибриногена (ПДФ)*. Вещества, в не больших количествах образующиеся и в норме в результате расщепления фибрина.

Определение растворимых фибрин-мономерных комплексов (РФМК).

Для выявления РФМК в клинике чаще используются так называемые *паракоагуляционные тесты*. Они основаны на феномене неферментативного свертывания РФМК при добавлении к плазме, в которой содержатся РФМК, 50% раствора этанола или 1% раствора протамина сульфата.

Проба с 50% раствором этанола является более чувствительной. В пробирку набирают 0,15 мл 50% этанола и 0,5 мл плазмы. Её встряхивают и помещают в штатив при комнатной температуре. Проба расценивается как положительная, если через 1-10 мин в пробирке образуется гель.

Проба с протамина сульфатом позволяет выявить не только полимеризацию фибрин-мономеров, высвобождающихся из РФМК, но и обнаружить осаждение ранних продуктов расщепления фибриногена/фибрина. Перед началом исследования предварительно готовят 5 разведений 1% раствора протамина сульфата (в 5, 10, 20, 40 и 80 раз). В каждое из приготовленных разведений добавляют 0,2 мл плазмы. Пробирки оставляют на 30 мин при комнатной температуре. Оценка результатов проводится так же, как и в пробе с этанолом. В норме отрицательный результат обнаруживают во всех разведениях протамина сульфата. Если хотя бы в одном из разведений образуется гель, результат оценивается как положительный.

Положительная проба с этанолом, а также положительный результат протаминсульфатной пробы в первых двух разведениях свидетельствует о наличии в плазме РФМК. Образование геля во всех разведениях протамина сульфата больше характерно для повышения уровня ранних продуктов расщепления фибриногена/фибрина.

Положительные результаты обеих проб встречаются при ДВС-синдроме, а также массивных тромбозах и тромбоэмболиях, сопровождающихся активацией системы фибринолиза.

Определение продуктов деградации фибрина (ПДФ) D-димеры.

D-димеры — это специфические продукты деградации фибрина, образующиеся в процессе лизиса сгустка крови под влиянием плазмина и некоторых неспецифических фибринолитиков. Концентрация D-димеров в сыворотке пропорциональна активности фибринолиза и количеству лизируемого фибрина. Этот тест позволяет судить об интенсивности процессов образования и разрушения фибриновых сгустков.

Определение D-димеров может проводиться иммуноферментным методом с использованием моноклональных антител, иммунодиффузии, методом турбидиметрии, а также латекс-агглютинации.

Повышение уровня *D-димеров* в крови наблюдается при венозных тромбозах, атеротромбозе, тромбоэмболии легочной артерии, ДВС-синдроме, при массивных оперативных вмешательствах.

На содержание D-димеров влияют такие факторы, как размер тромба, время от начала клинических проявлений до назначения антикоагулянтной терапии, длительность приема антикоагулянтов.

Конечный уровень знаний.

1. Тромбоциты образуются в:

- 1) селезенке
- 2) костном мозге
- 3) лимфатических узлах
- 4) все ответы правильные
- 5) правильного ответа нет

2. Тромбоцитопения характерна для:

- 1) краснухи новорожденных
- 2) лучевой болезни
- 3) ДВС-синдрома
- 4) ВИЧ-инфекции
- 5) все перечисленное верно

3. Пойкилоцитоз - это изменение:

- 1) формы эритроцитов
- 2) размера эритроцитов
- 3) интенсивности окраски эритроцитов
- 4) объема эритроцитов
- 5) всех перечисленных параметров

4. Подсчет эритроцитов рекомендуется проводить сразу после взятия крови при:

- 1) железодефицитных анемиях
- 2) гемолитических анемиях
- 3) апластическиханемиях
- 4) В₁₂- дефицитных анемиях
- 5) всех перечисленных анемиях

5. Основным энергетическим субстратом в эритроцитах является:

- 1. глюкоза
- 2. фруктоза (балл 0)
- 3. липиды (балл 0)
- 4. глютатион (балл 0)
- 5. гликоген (балл 0)

6. Для подсчета тромбоцитов может быть использован любой из перечисленных методов, кроме:

- 1) в камере с применением фазово-контрастного устройства
- 2) в мазках крови
- 3) в камере Горяева
- 4) на гематологическом анализаторе
- 5) тромбоэластограммы

7. Основную массу тромбоцитов периферической крови здоровых людей составляют:

- 1) юные
- 2) зрелые
- 3) старые
- 4) формы раздражения
- 5) регенеративные

8. Снижение количества тромбоцитов в периферической крови происходит в результате:

- 1) редукции мегакариоцитарного аппарата костного мозга, нарушения отшнуровки тромбоцитов от мегакариоцитов
 - 2) снижения продолжительности жизни тромбоцитов
 - 3) повышенного потребления тромбоцитов
 - 4) разрушения тромбоцитов антитромбоцитарными антителами
 - 5) всех перечисленных причин

9. Реактивный тромбоцитоз возможен при:

- 1) кровотечении
- 2) оперативном вмешательстве
- 3) малых дозах ионизирующей радиации
- 4) злокачественных новообразованиях
- 5) всех перечисленных состояниях

10. Повышение количества тромбоцитов наблюдается при любом из перечисленных заболеваний, кроме:

- 1) начального периода хронического миелолейкоза
- 2) миелофиброза
- 3) эритремии
- 4) B_{12} -дефицитной анемии
- 5) всех перечисленных состояниях

11. Выраженная тромбоцитопения наблюдается при:

- 1) лучевой болезни
- 2) дефиците витамина B_{12} и фолиевой кислоты
- 3) апластическиханемиях
- 4) остром лейкозе
- 5) всех перечисленных заболеваниях

12. В процессах гемостаза тромбоциты выполняют функцию:

- 1) ангиотрофическую
- 2) адгезивную
- 3) коагуляционную
- 4) агрегационную
- 5) все перечисленные функции

13. Подсчитано 80 тромбоцитов на 1000 эритроцитов, количество эритроцитов в крови равно 4,0х1012/л, число тромбоцитов в крови составляет:

- 1) 240x109/л
- 2) 280x109/л
- 3) 300x109/л
- 4) 320x109/л
- 5) 340x109/л

14. Тромбоциты образуются из:

- 1) плазмобласта
- 2) миелобласта
- 3) мегакариобласта
- 4) фибробласта
- 5) лимфобласта

15. Тромбоцитопатии не сопровождаются:

- 1) удлинением времени кровотечения
- 2) удлинением времени свертывания
- 3) нарушением образования протромбиназы
- 4) К-авитаминозом
- 5) ни одним из перечисленных эффектов

16. Тромбоцитопенией сопровождаются все перечисленные заболевания, кроме:

- 1) гиперспленизма
- 2) ДВС-синдрома
- 3) гемофилии
- 4) синдрома Казабаха-Меритта
- 5) ни одного из перечисленных

17. Фибринообразование следует контролировать:

- 1) Фибриногеном
- 2) Протромбиновым временем
- 3) Активированным частичным тромбопластиновым временем (АЧТВ)
- 4) Антитромбином III
- 5) Определением протеина С.

18. Антикоагулянтв непрямого действия можно контролировать:

- 1. Временем свертывания
- 2. Тромбиновым временем
- 3. Протромбиновым временем (МНО)
- 4. Продуктами деградации фибрина

5. Антитромбином III

19. При гемофилии имеется дефицит факторов

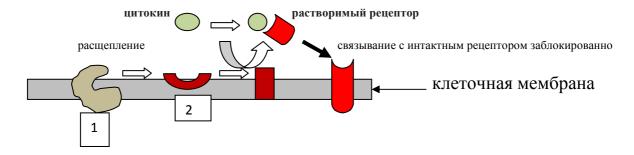
- 1) Плазмы
- 2) Тромбоцитов
- 3) Лейкоцитов
- 4) Эндотелия сосудов
- 5) Фибринолиза

20. Тромбинообразование следует контролировать:

- 1) Тромбиновым временем
- 2) Фактором XIII
- 3) Толерантностью плазмы к гепарину
- 4) Протромбиновым временем
- 5) Антитромбином III

ТЕМА: ЦИТОКИНЫ, ИШЕМИЯ И РЕПЕРФУЗИЯ: КЛИНИЧЕСКИЕ АСПЕКТЫ.

Основные вопросы темы.


- 1) Нейтрофильные гранулоциты, моноциты и макрофаги
- 2) Группы хемотаксических веществ (факторы хемотаксиса для нейтрофилов, моноцитов/макрофагов)
- 3) Основные молекулы клеточных мембран, удерживающие клетки воспаления
- 4) Признаки активации нейтрофилов
- 5) Антимикробные белки и ферменты нейтрофилов, моноцитов и макрофагов
- 6) Роль эндотелиальных клеток в развитии воспалительной реакции
- 7) Фактор фон Вилльебранта (фФВ)
- 8) Цитокины. Метаболиты арахидоновой кислоты
- 9) Синдром септического шока
- (свободнорадикальная гипотеза; гипотеза повреждения, связанная с перегрузкой Ca²⁺; гипотеза; повреждения в связи с потерей фосфолипидов из сарколеммы

Актуальность темы.

Цитокины (ЦК) — это продуцируемые клетками белково-пептидные факторы, осуществляющие коротко-дистантную регуляцию межклеточных и межсистемных взаимодействий. Цитокины определяют выживаемость клеток, стимуляцию или ингибирование их роста, дифференцировку, функциональную активацию и апоптоз клеток. Способность регулировать перечисленые функции обусловлена тем, что после взаимодействия цитокинов с комплементарными рецепторами на поверхности клеток, сигнал через элементы внутриклеточной трансдукции передается в ядро, где активируются соответствующие гены.

Белки, продукты активированных цитокинами генов, синтезируются клетками и регулируют перечисленные выше процессы.

Цитокины (ЦК) – гормоноподобные молекулы, действие которых на клетку-мишень опосредуется высокоспецифичными высокоаффинными мембранными рецепторами.

Рис. Растворимые рецепторы для цитокинов.

1 – фермент клеточной поверхности; 2 – цитокиновый рецептор

Все рецепторы ЦК представляют собой трансмембранные гликопротеины, у которых внеклеточная часть отвечает за связывание ЦК. Как правило, эти рецепторы состоят более чем из одной субъединицы, причем высокоаффинное связывание является следствием взаимодействия с разными субъединицами, каждая из которых сама способна связывать соответствующий ЦК, но с более низкой аффинностью. Одни субъединицы рецепторов реагируют только с определенным ЦК, в то время как другие способны формировать общие рецепторы для разных ЦК. Наличие общих структур в рецепторах может обусловливать функциональное сходство ряда ЦК. Кроме того, существуют общие групповые рецепторы, способствующие устранению избытка ЦК в очаге поражения. Синтез рецепторов протекает более интенсивно и длительно, чем синтез соответствующих ЦК, что обусловливает их более полную и быструю элиминацию из сосудистого русла и реализацию биологического эффекта в очаге поражения. Растворимый рецептор, связывающийся с ЦК, – это отщепленный ферментом внеклеточный домен мембранного рецептора. Растворимые рецепторы сохраняют высокую аффинность в отношении своих лигандов и благодаря этому способны нейтрализовать ЦК, препятствуя их доступу к интактным мембранным рецепторам; их можно обнаружить в сыворотке и моче. Растворимые рецепторы могут выполнять функции конкурирующих антагонистов, а также участвовать в транспорте, доставке ЦК в очаг поражения и выведении их из организма. В результате взаимодействия ЦК с рецептором инициируется сигнал, передача которого в клетку обычно происходит либо по пути с участием янус-киназы (ЈАК)-STAT, либо по пути с участием киназы Ras-MAP.

В отличие от классических гормонов большинство ЦК является молекулами локального (паракринного) действия. Они продуцируются и утилизируются клетками, находящимися в тесной близости. Возможно и аутокринное действие ЦК, т.е. действие на ту же клетку, которая секретировала данный ЦК. После выделения клетками-продуцентами ЦК имеют короткий период полувыведения из кровотока. Выведение катаболизированных ЦК из организма осуществляется печенью и почками. Несмотря на короткий период жизни ЦК, в сыворотках даже здоровых доноров иногда определяются их низкие уровни. Секреция ЦК — краткосрочный процесс. Кодирующая ЦК мРНК нестабильна, что в сочетании с краткосрочностью транскрипции генов ЦК приводит к непродолжительности их биосинтеза.

К системе ЦК в настоящее время относят около 300 индивидуальных полипептидных веществ. Среди всех известных к настоящему времени секретируемых клетками регуляторных факторов две группы ЦК являются наиболее хорошо изученными и, в связи с этим, наиболее часто используемыми в диагностических целях. Это факторы роста и ЦК иммунной системы (ИС). ЦК ИС характеризуются следующими общими свойствами:

- синтезируются в процессе реализации механизмов естественного или специфического иммунитета;
- проявляют свою активность при очень низких концентрациях (порядка 10-11 М/л);

- служат медиаторами иммунной и воспалительной реакций и обладают аутокринной, паракринной и эндокринной активностью;
- обладают плейотропной (полифункциональной) активностью, т.е. один ЦК оказывает влияние на различные процессы;
- характеризуются последовательностью осуществления эффектов: один ЦК способен индуцировать продукцию другого ЦК или экспрессию его рецепторов; наблюдается также синергизм и антагонизм действия различных ЦК.

Классификация ЦК может проводиться по их биохимическим и биологиским свойствам, а также по типам рецепторов. В зависимости от того, какие клетки ИС преимущественно синтезируют тот или иной ЦК, различают интелейкины (IL), монокины и лимфокины. В настоящее время 37 интерлейкинов имеют цифровые обозначения (IL-1-37), остальные ЦК буквенные: CSF (колониестимулирующие факторы), OSM (онкостатин М), LIF (фактор, ингибирующий лейкозные клетки), TGF (трансформирующие факторы роста), CNTF (цилиарный нейротрофический фактор), TNF (фактор некроза опухолей), интерфероны (IFN) и т.д. По механизму действия ЦК ИС можно условно подразделить на следующие группы:

- 1. Провоспалительные ЦК (IL-1, IL-6, IL-12, TNFα, IFNα, IFNβ, IFNγ, хемокины IL-8, MCP-1, RANTES и др.) продуцируются и действуют на иммунокомпетентные клетки, инициируя воспалительный ответ. Многие авторы отмечают, что высокий уровень этих ЦК является отражением активности и тяжести патологического процесса.
- 2. Противовоспалительные ЦК (IL-4, IL-10, TGFβ и др.), регулирующие специфические иммунные реакции и ограничивающие развитие воспаления.
- 3. Регуляторы клеточного и гуморального иммунитета (естественного или специфического), обладающие собственными эффекторными функциями (противовирусными, цитотоксическими).

Спектры биологических активностей ЦК ИС в значительной степени перекрываются: один и тот же процесс может стимулироваться в клетке более чем одним ЦК. Во многих случаях в действиях ЦК наблюдается синергизм. Антигенная (АГ) стимуляция приводит к секреции ЦК «первого поколения» – IL-1 и -6, TNF-а, которые индуцируют биосинтез центрального регуляторного ЦК: IL-2, а также IL-3-5, INF-ү и др. В свою очередь, ЦК «второго поколения» влияют на биосинтез ранних ЦК. Такой принцип действия позволяет не только регулировать иммунный ответ, но и амплифицировать его, вовлекая в реакцию все возрастающее число клеток. IL-2 появляется в цитоплазме Т-клеток через 2 ч после стимуляции; IL-4 через 4 ч, IL-10 через 6 ч, IL-9 через 24 ч. Пик выработки различных лимфокинов варьирует: 12 ч для IL-2, 48 ч для IL-4 и IL-5, 72 ч для IL-9 и INFγ. Действие ЦК тесно связано с физиологическими и патофизиологическими реакциями организма. При выработки различных лимфокиновиварьирует: 12 ч для IL-2, 48 ч для IL-4 и IL-5, 72 ч для IL-9 и INFγ.

Действие ЦК тесно связано с физиологическими и патофизиологическими реакциями организма. При этом происходит модуляция как локальных, так и системных механизмов защиты. Одной из важнейших функций системы ЦК является обеспечение согласованного действия иммунной, эндокринной и нервной системы в ответ на стресс. Усиление продукции определенных ЦКвоспаления или факторов, стимулирующих рост лимфоцитов, может лежать в основе некоторых заболеваний. В то же время снижение уровня ряда ЦК также способно провоцировать заболевание. Так, CSF играет ведущую роль в нормальном гемопоэзе, и уменьшение его продукции нарушает механизмы защиты против инфекций.

Поскольку ЦК являются локальными медиаторами, более целесообразно измерять их уровни в соответствующих тканях после экстракции тканевых протеинов или в естественных жидкостях, например, в слезе, смывах из полостей, моче, спинномозговой жидкости и т.д. Уровни ЦК в сыворотке или других биологических жидкостях отражают текущее состояние работы иммунной системы, т.е. их синтез клетками *in vivo*. В норме в крови ЦК ИС не определяются. Выявление ЦК обычно отражает наличие воспаления. Определение уровней продукции ЦК мононуклеарами периферической крови (МПК) *in vitro* показывает функциональное состояние этих клеток. Спонтанная продукция ЦК МПК в культуре свидетельствует, что они уже активированы *in vivo*. Индуцированный (различными стимуляторами, митогенами) синтез ЦК отражает потенциальную, резервную способностьклеток отвечать на АГ-стимул (в частности, на действие лекарственных препаратов). Сниженная индуцированная продукция ЦК *in vitro* может служить одним из признаков иммунодефицитного состояния.

оценке vровней ЦК необходимо помнить, они являются АГ-неспецифическими факторами. Поэтому специфическая диагностика инфекционных, аутоиммунных и аллергических заболеваний с определения ШΚ помощью уровня тех или Тем не менее, изучение уровней ЦК позволяет получить информацию о функциональной активности различных типов иммунокомпетентных клеток; о тяжести воспалительного процесса, его переходе на системный уровень и прогнозе; о соотношении процессов аллергических и аутоиммунных заболеваний. Кроме того, определение уровней ЦК используется при применении новых иммуномодулирующих препаратов на основе рекомбинантнных ЦК и их антагонистов для изучения фармакокинетики этих препаратов, а также их способности индуцировать синтез других ЦК.

Однако необходимо учитывать то обстоятельство, что биологические эффекты многих ЦК, в частности IL, имеют высокую степень идентичности, которая создает достаточно широкие возможности для компенсациинедостаточности или дефицита одних медиаторов другими, а также то, что многие ЦК способны взаимодействовать со структурами одних и тех же рецепторных комплексов. Именно это обстоятельство объясняет нередко отсутствие корреляции между содержанием тех или иных ЦК и клиническими особенностями течения патологического процесса. В равной степени это относится и к

возможному отсутствию корреляции между уровнями ЦК и эффективностью терапии. Становится все более очевидным, что ориентация только на уже хорошо известные ЦК может не отражать истинного состояния цитокиновой регуляции, особенно если учесть, что в подавляющем большинстве случаев определение ЦК ограничено лишь несколькими из них.

Цитокины и сердечно-сосудистые заболевания.

IL-6, так же как IL-1, инициирует синтез белков острой фазы. Повышение уровней IL-1 и -6 ассоциируется с повторными коронарными событиями больных ИБС. В ряде многочисленных исследований показано, что повышенный уровень IL-6 имеет более важное прогностическое значение по сравнению с hsCPБ для развития сердечно-сосудистой смерти и других кардиоваскулярных осложнений. У больных ОКС отмечалось достоверное повышение уровней IL-1, -4 и -10 по сравнению со здоровыми лицами. Обнаружено существенное повышение уровней IL-2, -4, -6, -12 и -18 у больных ИБС по сравнению со здоровыми лицами, причем уровень IL-6 был еще выше у пациентов с ИМ. ТNFα обладает в основном иммуномодулирующим и провоспалительным действием. Концентрация циркулирующего TNFα обычно очень низка, однако резко возрастает (максимум за 1,5 часа) при возникновении острой ситуации. Определение уровней TNFα и IL-6 играет немаловажную роль в диагностике застойной сердечной недостаточности.

Конечный уровень знаний.

- 1. Углекислый газ транспортируется кровью в разных состояниях. Расположите следующие транспортные формы CO_2 по степени процентного преобладания в общей доле транспортируемой углекислоты:
 - 1) карбгемоглобин;
 - 2) бикарбонат;
 - 3) физически растворенный СО₂.
- 2. Расположите реакции синтеза гема в той последовательности, в которой они протекают в организме:
 - 1) образование порфобиллиногена;
 - 2) образование δ-аминолевулиновой кислоты;
 - 3) образование протопорфиринаІХ;
 - 4) присоединение железа.
- 3. Снижение концентрации общего белка в плазме крови называется ... и может наблюдаться при ...
- 4. Повышение концентрации общего белка плазмы крови называется ...и может наблюдаться вследствие...

- 5. Перечислите основные буферные системы крови...
- 6. Метаболизм глюкозы в эритроцитах представлен ...
- 7. В связи с высокими концентрациями кислорода в эритроците создаются благоприятные условия для окисления гемоглобина в метгемоглобин, который не может выполнять функцию переноса кислорода. Обратное восстановление метгемоглобина в гемоглобин осуществляется при участии фермента..., донором электронов и протонов в котором служит кофермент...
- 8. Транспорт и депонирование железа в организме происходит при участии ... соответственно.
- 9. Ключевой реакцией синтеза гема является образование ..., реакцию катализирует фермент..., который ингибируется ...
 - 10. На синтез одной молекулы гема используется ... молекул глицина.
- 11. Заболевания, обусловленные наследственным дефектом ферментов синтеза гема, называются ...
- 12. Подберите к указанным типам гемоглобина соответствующие наборы полипептидных цепей:

 $A - HB A_1$

 $1. \alpha 2 \gamma 2$

 $Б-Hв A_2$

 $2. \alpha 2\beta 2$

 $B - H_BF$

 $3. \alpha 2\delta 2$

13. Определите участок β полипептидной цепи, принадлежащий нормальному гемоглобину и гемоглобину S:

А-нормальный гемоглобин;

1. вал-гис-лей-тре-про-глу-глу-лиз-...

Б – гемоглобин S.

2. вал-гис-лей-тре-про-вал-глу-лиз-...

14. Сравните два белка, участвующие в обмене железа:

А – Только трансферрин.

1. Содержит негемовое железо.

Б – Только ферритин.

2. Содержит гемовое железо.

3. Гликопротеин плазмы крови.

4. Депонирует железо в клетках организма.

$\mathbf{F} - \mathbf{\alpha}_1$ глобулины;	2. Обеспечивают осмотическое давление крови.	
$B-\alpha_2$ глобулины;	3. Осуществляют транспорт кислорода.	
$\Gamma - \beta$ глобулины.	4. Осуществляют транспорт гидрофобных молекул (жирные кислоты, билирубин и т.д.).	
Д – ү глобулины	5. Осуществляют транспорт тироксина, кортикостероидов.	
	6. Осуществляют транспорт железа.	
	7. Осуществляет транспорт меди.	
	8. Содержат ингибиторы тканевыхпротеиназ.	
ки заболеваний и контр	менты крови могут быть использованы для диагности- роля эффективности лечения. При патологии каких ор- ися активность перечисленных ниже ферментов?	
А – Печень.	1. ЛДГ _{4,5} .	
	2 .ЛД $\Gamma_{1,2}$	
Б – Сердце.	3. Амилаза.	
	4. Креатинфосфокиназа (МВ форма).	
В – Поджелудочная железа.	5. Аланинаминотрансфераза.	
	6. Аспартатаминотрансфераза.	
17. Укажите в	озможные причины:	

А – Гиперпротеинемий.
1. нефротический синдром;
2. обильные рвоты;
3. обширные ожоги;
Б – Гипопротеинемии.
4. поражение печени;
5. острые инфекции;
6. белковая недостаточность.

18. Подберите верные утверждения для следующих понятий:

А – ацидоз; 1. сдвиг рН крови в кислую сторону;

2. развивается на фоне гипервентиляции легких;

Б – алкалоз. 3. сдвиг рН крови в щелочную сторону;

4. развивается на фоне сахарного диабета.

19. Подберите к перечисленным патологиям соответствующее определение:

A – парапротеинемия; 1. нарушение синтеза одной из нормальных цепей гемоглобина;

Б – талассемия; 2. появление в крови белков не свойственных нормальному организму;

В – порфирия; 3. нарушение процентного соотношения основных белковых фракций;

Γ-диспротеинемия;4. наследственное изменение структуры одной из полипептидных цепей гемоглобина;

 Д – гемоглобинопа 5. накопление предшественников гема, вследствие

 тии.
 дефекта ферментов участвующих в его синтезе.

20. Поддержание осмотического давления внутри сосуда обеспечивается:

- 1) альбуминами;
- 2) катионами натрия;
- 3) действием цАМФ;
- 4) катионами кальция;
- 5) содержанием глюкозы.