Федеральное государственное бюджетное образовательное учреждение высшего образования «Северо-Осетинская государственная медицинская академия» Министерства здравоохранения российской Федерации

Кафедра химии и физики

УТВЕРЖДЕНО

протоколом заседания Центрального координационного учебнометодического совета от (23) мая 2023 г. № 5

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине «Информационные технологии в медицине» основной профессиональной образовательной программы высшего образования – программы специалитета по специальности 31.05.02. Педиатрия, утвержденной 24.05.2023 г.

для студентов 4 курса по специальности 31.05.02. Педиатрия.

Рассмотрено и одобрено на заседании кафедры 22 мая 2023г. Протокол № 9

Заведующий кафедрой д.х.н., проф. Р.В. Калагова

СТРУКТУРА ОЦЕНОЧНЫХ МАТЕРИАЛОВ

- 1. Титульный лист
- 2. Структура оценочных материалов
- 3. Рецензии на оценочные материалы
- 4. Паспорт оценочных материалов
- 5. Комплект оценочных материалов:

вопросы к модулям вопросы к зачету эталоны тестовых заданий (с титульным листом и оглавлением) билеты к зачету

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВЕРО-ОСЕТИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ **ФЕДЕРАЦИИ**

РЕЦЕНЗИЯ на оценочные материалы

по дисциплине «Информационные технологии в медицине» для студентов 4 курса

по специальности 31.05.02. Педиатрия Оценочные материалы составлены на кафедре Химии и физики на основании рабочей программы дисциплины и соответствуют требованиям ΦΓΟС ΒΟ.

Оценочные материалы включают в себя билеты к зачету. Количество билетов составляет 15, что достаточно проведения зачета и исключает неоднократное использование одного и того же билета во время экзамена в одной экзаменационной группе в один день. Экзаменационный билет выполнен на бланках единого образца по стандартной форме, на бумаге одного цвета и качества. Билет включает в себя 2 вопроса. Формулировки вопросов совпадают с формулировками перечня вопросов, выносимых на зачет. Содержание вопросов одного билета относиться к различным разделам программы, позволяющее более полно охватить материал учебной дисциплины. Вопросы в билетах разнообразны и отражают весь объем практических навыков по информационным технологиям в медицине. Сложность вопросов в экзаменационных билетах по зачету распределена равномерно.

Замечаний к рецензируемым оценочным материалам нет.

В целом, оценочные материалы по предмету способствуют качественной оценке уровня владения обучающимися научными и профессиональными компетенциями.

Рецензируемый фонд оценочных средств по ИТ в медицине может быть рекомендован к использованию для промежуточной аттестации на педиатрическом факультете у студентов 4 курса.

Рецензент:

Председатель ЦУМК

по естественнонаучным дисциплинам

специалист по кадрам отдела

кадров и документооборота ВО СОГМА Минздрава России

ДОКУМЕНТООБОРОТ

Н.И.Боциева

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВЕРО-ОСЕТИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЕЦЕНЗИЯ на оценочные материалы

по дисциплине «Информационные технологии в медицине» для студентов 4 курса по специальности 31.05.02. Педиатрия

Оценочные материалы составлены на кафедре Химии и физики на основании рабочей программы дисциплины и соответствуют требованиям ФГОС ВО.

Оценочные материалы включают в себя билеты к зачету. Количество билетов составляет 15, что достаточно проведения зачета и исключает неоднократное использование одного и того же билета во время экзамена в одной экзаменационной группе в один день. Экзаменационный билет выполнен на бланках единого образца по стандартной форме, на бумаге одного цвета и качества. Билет включает в себя 2 вопроса. Формулировки вопросов совпадают с формулировками перечня вопросов, выносимых на зачет. Содержание вопросов одного билета относиться к различным разделам программы, позволяющее более полно охватить материал учебной дисциплины. Вопросы в билетах разнообразны и отражают весь объем практических навыков по информационным технологиям в медицине. Сложность вопросов в экзаменационных билетах по зачету распределена равномерно.

Замечаний к рецензируемым оценочным материалам нет.

В целом, оценочные материалы по предмету способствуют качественной оценке уровня владения обучающимися научными и профессиональными компетенциями.

Рецензируемый фонд оценочных средств по ИТ в медицине может быть рекомендован к использованию для промежуточной аттестации на педиатрическом факультете у студентов 4 курса.

Рецензент:

Главный врач ГБУЗ «Поликлиника №1» МЗ РСО Алания

3.В.Мецаева

Паспорт оценочных материалов по дисциплине «Информационные технологии в медицине»

№ п/п	Наименование контролируемого раздела (темы) дисциплины/ модуля	Коды формируемой компетенции (этапа)	Наименование оценочного средства		
1	2	3	5		
Вид контроля	Промежуточн				
1.	Анализ биомедицинских сигналов - цифровые сигналы и изображения	ОПК-1	тестовый контроль, банк практических заданий, билеты к зачету		
2.	Цифровые изображения в МАТLAВ и применение их в медицинских исследованиях	OK-1	тестовый контроль, банк практических заданий, билеты к зачету		
3.	Программные средства реализации информационных процессов в медицине. Базовые технологии дискретных ортогональных и вейвлет - преобразований медицинской информации.	ОПК-1	тестовый контроль, банк практических заданий, билеты к зачету		
4.	Распознавание объектов при расшифровке медицинских изображений	OK-1	тестовый контроль, банк практических заданий, билеты к зачету		

Федеральное государственного бюджетного образовательного учреждение высшего образования

«Северо-Осетинская государственная медицинская академия» Министерства здравоохранения Российской Федерации

Кафедра химии и физики

ЭТАЛОНЫ ТЕСТОВЫХ ЗАДАНИЙ

по факультативной дисциплине «Информационные технологии в медицине»

основной профессиональной образовательной программы высшего образования – программы специалитета по специальности 31.05.02. Педиатрия, утвержденной 24.05.2023 г.

Для студентов 4 курса

По специальности 31.05.02. Педиатрия.

Рассмотрено и одобрено на заседании кафедры 22 мая 2023г. Протокол № 9

Заведующий кафедрой

A

д.х.н., проф. Р.В. Калагова

г. Владикавказ 2023 г.

№ п/п	Наименование контролируемого раздела (темы) дисциплины/ модуля	Код формируемой компетенции (этапа)	Количество тестов	Стр.
1	2	3	3	4
Вид контроля	Текущий контроль успеваемости	и/ Промежуточна	я аттестация	
	Входной контроль		20	
1.	Анализ биомедицинских сигналов - цифровые сигналы и изображения	ОПК-1	20	
2.	Цифровые изображения в MATLAB и применение их в медицинских исследованиях	ОК-1	20	
3.	Программные средства реализации информационных процессов в медицине. Базовые технологии дискретных ортогональных и вейвлет - преобразований медицинской информации.	ОПК-1	20	
4.	Распознавание объектов при расшифровке медицинских изображений	ОК-1	20	

1. Система Matlab является

- 1. универсальной математической системой
- 2. текстовым редактором
- 3. алгоритмическим языком программирования
- 4. системой работы с базами данных

2. К аналогам системы Matlab не относится

- 1. Basic
- 2. Mathematica
- 3. Maple

3. Панель Математика содержит

- 1. кнопки с палитрами часто используемых математических обозначений
- 2. кнопки с математическими действиями
- 3. списки математических функций
- 4. кнопки для программирования функций

4. Символом := в Matlab обозначается

- 1. присваивание
- 2. равенство
- 3. приближение
- 4. описание

5. Операция присваивания в документе Matlab имеет вид:

- 1. a = 5
- 2. a=5
- 3. a; 5
- 4. a:5

б. При вводе символа присваивания с клавиатуры, следует ввести

- 1. двоеточие
- 2. точку с запятой
- 3. пробел
- 4. знак равенства

7. Чтобы изменить формат результата нужно

- 1. изменить количество знаков в окне Формат результата
- 2. добавить к результату ноль
- 3. изменить точность вычислений
- 4. ввести исходные данные с большей точностью

8. Перед вводом нижнего индекса элемента вектора следует нажать клавишу

- 1.
- 2. Shift
- 3. Alt
- 4.

9. Дискретная переменная позволяет

- 1. задать переменной ряд чисел, выстроенных в порядке возрастания с равным шагом
- 2. задать переменной интервал изменения
- 3. изменить значение переменной на единицу
- 4. в списке нет правильного ответа

10. Встроенные функции, расположенные на палитре Калькулятор вводятся в документ

- 1. щелчком мыши по имени функции
- 2. только вводом имени функции с клавиатуры
- 3. выделением имени функции на палитре Калькулятор
- 4. в списке нет правильного ответа

11. Если при задании дискретной переменной шаг опущен, то

- . шаг считается равным 1
- 2
- 3. шаг считается равным 0
- 4. шаг считается равным 0.5
- 5. Сообщение об ошибке

12. Числовая константа ТОL предназначена для

- 1. задания точности при приближенных вычислениях*
- 2. задания количества знаков при выводе результата
- 3. задания точности исходных данных
- 4. задания количества выводимых результатов

13. Чтобы получить таблицу значений функции f(x) в заданном дискретной переменной диапазоне следует ввести

- 1. f(x) =
- 2. f(x) :=
- 3. f(x) и нажать клавишуTAB
- 4. f(x)?

14. Функцию пользователя

- 1. нужно описать до ее первого применения *
- 2. можно описать в любом месте документа
- 3. можно не описывать
- 4. в списке нет правильного ответа

16. Курсор ввода отмечен

- 1. красным крестиком
- 2. горизонтальной линией красного цвета
- 3. красной вертикальной линией
- 4. в списке нет правильного ответа

17. Местозаполнитель символа это

- 1. черный прямоугольник, в который согласно формату должен быть введен символ
- 2. черная прямоугольная рамка, в которую модно ввести формулу
- 3. красный прямоугольник, в котором выводится сообщение об ошибке
- 4. в списке нет правильного ответа

18. Для перехода от одного местозаполнителя к другому можно использовать клавишу

- 1. TAB
- 2. HOME
- 3. END
- 4. в списке нет правильного ответа

19. Чтобы удалить часть формулы надо

1. выделить эту часть и нажать клавишу Del

- 2. нажить клавишу Del
- 3. нажить клавишу Backspace
- 4. В списке нет правильного ответа

20. Для начала ввода текста непосредственно в вычислительную область следует ввести

- 1. символ "
- 2. символ /
- 3. символ \
- 4. символ?

21. В месте, отмеченном курсором, шаблон графика появляется посредством

- 1. щелчка мыши по соответствующему шаблону на панели График
- 2. перетаскивания мышью шаблона графика
- 3. двойного щелчка по месту, отмеченному курсором
- 4. в списке нет правильного ответа

22. Если при построении графика аргумент функции не описан, то

- 1. по умолчанию график будет построен в диапазоне от -10 до 10 с шагом 1
- 2. по умолчанию график будет построен в диапазоне от -1 до 1 с шагом 0.1
- 3. появится сообщение об ошибке
- 4. в списке нет правильного ответа

23. При построении в одном шаблоне 2-х и более графиков имена функций вводятся

- 1. через запятую
- 2. через двоеточие
- 3. через пробел
- 4. в списке нет правильного ответа

24. Чтобы удалить график надо

- 1. активизировать его щелчком мыши и нажать клавишу Del
- 2. нажать клавишу Del
- 3. выделить график с помощью мыши
- 4. в списке нет правильного ответа

25. Чтобы изменить графику цвет, символ или толщину линии в окне Форматирования графика используется вклалка

- 1. Traces
- 2. X-Y Axes
- 3. Labels
- 4. Defaults

26. Символ "->" (стрелка) предназначен

- 1. для проведения символьных исчислений
- 1. для ввода комментарий
- 2. для аналитического преобразования функции
- 3. для вычисления функции

27. Ключевое слово simplify используется

- 1. при упрощении выражений
- 1. при разложении выражения на множители
- 2. при приведении подобных слагаемых
- 3. в списке нет правильного ответа

28. Ключевое слово factor используется

- 1. при разложении выражения на множители
- 1. при упрощении выражений
- 2. при приведении подобных слагаемых
- 3. в списке нет правильного ответа

29. Ключевое слово parfrac используется

- 1. при определении полиномиальных коэффициентов
- 1. при упрощении выражений
- 2. при приведении подобных слагаемых
- 3. в списке нет правильного ответа

30. Ключевое слово collect используется

- 1. при приведении подобных слагаемых
- 1. при определении полиномиальных коэффициентов
- 2. при упрощении выражений
- 3. в списке нет правильного ответа

31. Для аналитического решения задач математического анализа предназначена панель

- 1. Математика
- 1. Форматирование
- 2. Стандартная

- 3. Калькулятор
- 32. Для выполнения операции подстановки значения переменной в выражение используется ключевое слово
- 1. substitute
- 1. complex
- 2. solve
- 3. laplace
- 33. При подстановке значения переменной в выражение после ключевого слова substitute в местозаполнитель следует ввести
- 1. логическое выражение
- 1. переменную
- 2. формулу
- 3. константу
- 35. Для проведения аналитического дифференцирования используется символ
- 1.
- 1. =
- $2. \approx$
- 3. ÷

36.В местозаполнители оператора дифференцирования требуется ввести

- 1. функцию, зависящую от аргумента и имя аргумента
- 1. имя функции и имя аргумента
- 2. имя производной функции и имя аргумента
- 3.в списке нет правильного ответа

37.В местозаполнители оператора интегрирования требуется ввести

- 1. функцию, зависящую от аргумента, имя аргумента и пределы интегрирования
- 1. имя функции, имя аргумента и пределы интегрирования
- 2. имя производной функции и имя аргумента
- 3. в списке нет правильного ответа
- 38. Для проведения аналитического дифференцирования используется символ
- 1. =
- 2. ≈
- 3. в списке нет правильного ответа
- 39. Если интеграл расходится, то
- 1. выдается сообщение об ошибке
- 1. вычисляется расходящийся интеграл
- 2. интеграл заменяется сходящимся
- 3. в списке нет правильного ответа
- 40. Для перемещения элемента оформления документа его нужно
- 1. выделить и перетащить с использованием мыши
- 2. скопировать и вставить в нужное место
- 3. удалить и вставить в нужное место
- 4. в списке нет правильного ответа

41. Чтобы изменить размеры элемента документа требуется

- 1. выделить и растянуть (или сжать), потянув за черные прямоугольники на границах области выделения
- 2. несколько раз черкнуть мышью в пределах области элемента
- 3. перенести элемент документа в Word и там изменить размеры
- 4. в списке нет правильного ответа

42. Выделение цветом производится с использованием

- 1. пункта Свойства элемента меню Формат
- 2. панели Форматирование
- 3. пункта Обновить элемента меню Вид
- 4. в списке нет правильного ответа

43. Чтобы создать текстовый регион требуется ввести символ

- 1. двойная кавычка
- 2. двоеточие
- 3. открывающая квадратная скобка
- 4. апостроф

44. Для форматирования текста в Matlab служит

- 1. панель Форматирование
- 2. панель Стандартная
- 3. пункт Формат главного меню
- 4. в списке нет правильного ответа
- 45. Для установки абзаца используется
- 1. маркеры на линейке

- пункт Формат главного меню
 панель Форматирование
- 4. в списке нет правильного ответа
- в списке нет правильного ответа
 Количество копий при печали документа устанавливается в окне
 в окне печати документа
 в окне установки опций страницы
 командой Печать

- 4. в списке нет правильного ответа

Конец 40-х голов 20 - столетия ознаменовался рождением новой науки - дату возникновения
Конец 40-х годов 20 - столетия ознаменовался рождением новой науки, дату возникновения которой связывают с выходом в свет основополагающей работы К. Шеннона «Математическая теория связи» (1948 г.). теория информации теория кодирования
математическая кибернетика
Преобразование сообщения в сигнал заключается в переводе неэлектрических величин, определяющих первоначальное сообщение, в электрические и производится в специальных устройствах, на вход которых поступают, а на выходе получаются электрические сигналы. сообщение сигнал кардиограмма
Сигналы передаются на расстояние по каналу связи линии связи проводам
Каналом связи называется совокупность технических средств, обеспечивающих передачу из пункта отправления сообщения в пункт приема. электрических сигналов сообщений электронных писем
Сообщения, поступающие в систему передачи информации, прежде всего, преобразуются в сигналы коды шифры
Сигналы в зависимости от сообщений, которые они отображают, могут быть непрерывными и дискретными закодированными зашифрованными
Непрерывными сигналами называются такие, у которых функции, описывающие изменение тока (или напряжения), являются непрерывными постоянными разрывами 1 рода
Дискретные сигналы характеризуются числом значений тока или напряжения. конечным бесконечным постоянным
Преобразование непрерывного сигнала в дискретный осуществляется путем квантования дискретизации логарифмирования
Квантованием называется замена непрерывной шкалы уровней дискретной оцифрованной числовой

Сообщение, преобразованное в дискретный сигнал, подвергается операции
кодирования
шифрования
декомпозиции
Под <i>кодированием</i> в широком смысле понимается преобразование сообщения в сигнал
число
функцию
Емкое понятие кодирования применительно к системам передачи информации обычно трактуется в узком смысле как отображение дискретных сообщений сигналами в виде определенных сочетаний символов чисел словосочетаний
Идея кодирования возникла давно и преследовала в основном две цели: передачи информации на расстоянии.
быстроту и секретность
дискретность и конфиденциальность
зашифрованность и индивидуальность
В технике связи, телемеханике и некоторых других областях кодирование используется сейчас не только для обеспечения быстроты, а иногда и секретности, но также и для создания условий, обеспечивающих рациональную и экономичную передачу по каналам связи. сообщений сигналов
чисел
В каждом конкретном случае кодирование производится по определенному правилу, т. е. в определенном коде шифре стиле
Кодом можно назвать систему комбинаций, каждая из которых отображает одно определенное сообщение и состоит из фиксированного набора, или короче, код - это множество кодовых комбинаций. символов слов чисел
В зависимости от числа символов в кодовых комбинациях коды делятся на равномерные и неравномерные числовые и символьные математические и нематематические
Общее число комбинаций в N определяется формуле $N=m^n$, где n - число символов в комбинации; m значность кода, т. е. число значений, которые может принимать символ. равномерном коде неравномерном цифровом
Во многих случаях кодирующее устройство выдает последовательность импульсов постоянного тока, которая должна передаваться по телефонным каналам, не пропускающим постоянного тока. В таких случаях производится, позволяющая согласовать параметры сигналов и канала связи.
модуляция кодирование погарифмирование
Под понимается воздействие на некоторый параметр постоянного или переменного тока, осуществляемое по
закону, принятому при кодировании. В результате такого воздействия в изменениях этого параметра будет заложена
передаваемая информация.
модуляцией

композицией
При переменного тока воздействию подвергается один из параметров гармонического колебания, называемог часто «несущим» $u(t) = U \sin(\omega t + \phi)$, где U - амплитуда; ω - круговая частота; ϕ - начальная фаза колебания. модуляции передаче
преобразовании
Принятое сообщение должно полностью соответствовать переданному. В системе передачи информации это обеспечи вается однозначностью всех преобразований (кодирование - декодирование, модуляция - демодуляция и т. д.). Однак принятое сообщение может быть все-таки искажено, если хотя бы один сигнал в процессе передачи от одного устройства другому будет принят неверно. Неверный прием сигнала является следствием действия, подмешивающихся сигналам, главным образом, в процессе передачи их по каналу связи. помех сигналов сообщений
Появление является следствием влияния внешних источников электроэнергии на аппаратуру и линии связ (атмосферные электрические разряды, линии электропередачи, промышленное электрооборудование и т. д.). помех сигналов источников
Способность системы передачи информации противостоять вредному действию помех называется помехоустойчивость карактеризовать помехоустойчивость можно различными величинами. Наибольшее распространение получила ее оценк вероятностью неверного приема знака (ошибки), весьма удобная при передаче алфавитно-цифровых сообщений. Этой ж величиной характеризуют и передачи информации, т. е. вероятность правильного приема знака (P_{nn} $P_{nm} = 1 - P_{om}$ где P_{ou} - вероятность ошибки. достоверность точность
коррелированность ———————————————————————————————————
определяется по следующей формуле: $H = -\sum_{i=1}^n p_i \log p_i$, где H - энтропия; p_i - вероятность i -ог события. Количество энтропии Количество информации Количество сигналов
Энтропия обладает следующими свойствами: 1. энтропия равна, когда одно из событий достоверно, а други невозможны; 2. энтропия максимальна, когда все возможные события равновероятны, и растет с увеличением числ равновероятных событий; 3.энтропия обладает свойством аддитивности, т.е. энтропию независимых систем можн складывать. нулю единице бесконечности
Определение как меры уменьшения энтропии вполне логично. Если до получения сообщения энтропия систем X была равна $H_1(X)$, а после его получения $H_2(X)$, то вполне естественно определить, содержащейся данном сообщении I : $I = H_1(X) - H_2(X)$ количества информации количества энергии количества неопределенности
Если за основание логарифма принять число 2, то получаем двоичную единицу информации

бит

байт мегабайт											
Если использовать	натуральный	і логарифм	В	определении	количества	информации,	то	единицей	измерения	является	-
 нат бит											
байт											
Если использовать	десятичный	логарифм	В	определении	количества	информации,	то	единицей	измерения	является	-
хартли											
нат											
бит											

Билеты к зачету(Эталон)

Федеральное государственное бюджетное образовательное учреждение высшего образования «Северо-Осетинская государственная медицинская академия» Министерства здравоохранения Российской Федерации

Кафедра — химии и физики
Факультет—Педиатрия

Дисциплина — «Информационные технологии в медицине»

Курс 4

Билет к зачету № 1

- 1. Информационные технологии. Предметная область. Медицинские информационные системы.
- 2. Система Matlab и пакет Processing Toolbox

Зав. кафедрой, д.х.н., профессор Р.В. Калагова

Федеральное государственное бюджетное образовательное учреждение высшего образования «Северо-Осетинская государственная медицинская академия» Министерства здравоохранения Российской Федерации