Государственное бюджетное образовательное учреждение высшего профессионального образования «Северо-Осетинская государственная медицинская академия» Министерства здравоохранения Российской Федерации

КАФЕДРА ГИГИЕНЫ И ФИЗИЧЕСКОЙ КУЛЬТУРЫ

А.Р. Кусова, З.А. Перисаева

ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ В ПИТАНИИ

Методические рекомендации к практическим занятиям для студентов лечебного и стоматологического факультетов

Кусова. А.Р., Перисаева З.А.

Полиненасыщенные жирные кислоты в питании: методические рекомендации; Северо-Осетинская государственная медицинская академия: Владикавказ, 2016. – 10 с.

В данных методических рекомендациях рассмотрены наиболее дефицитные в питании человека ПНЖК, играющие исключительно важную роль в формировании правильного рациона питания. ПНЖК относятся к эссенциальным (незаменимым) жирным кислотам. Они не синтезируются в организме человека и должны ежедневно в достаточном количестве и сбалансированном составе поступать извне. Методические рекомендации «Полиненасыщенные жирные кислоты в питании» подготовлены по дисциплине «Гигиена» в соответствии с Федеральным государственным образовательным стандартом высшего профессионального образования для студентов, обучающихся по специальностям Лечебное дело (31.05.01) и Стоматология (31.05.03)

УДК 613.2

Рецензенты:

Р.В. Калагова – доктор химических наук, доцент, заведующая кафедрой химии и физики ГБОУ ВПО СОГМА Минздрава России.

И.Ю. Дзулаева – кандидат медицинских наук, доцент кафедры гигиены медико - профилактического факультета с эпидемиологией ГБОУ ВПО СОГМА Минздрава России.

Утверждено и рекомендовано к печати Центральным координационным учебно-методическим советом ФГБОУ ВПО СОГМА Минздрава России (протокол № 1 от 12 сентября 2016г.).

Введение

Внимание исследователей жирно-кислотному составу потребляемого с пищей жира было впервые привлечено середине 70-х годов прошлого века, когда В эпидемиологических исследованиях была показана распространённость низкая заболеваний, связанных атеросклерозом, y эскимосов

Гренландии и в 10 раз меньшая их смертность от инфаркта миокарда, чем у жителей Дании и Северной Америки, несмотря на то, что потребление жира и холестерина у всех этих популяций было одинаково высоким. Разница была в составе жирных кислот. У датчан потребление насыщенных жирных кислот и ПНЖК омега-6 было в 2 раза выше, чем у эскимосов. Эскимосы потребляли в 5-10 раз больше длинноцепочечных ПНЖК омега-3: ЭПК и ДГК. Дальнейшие экспериментальные И клинические исследования подтвердили антиатерогенный эффект ПНЖК омега-3. Установлено, что ПНЖК омега-3 уменьшают содержание в крови атерогенных липопротеинов (липопротеинов низкой и очень низкой плотности). Подтверждено кардиопротекторное и антиаритмическое действие (свободные ЭПК и ДГК в мембранах клеток сердца ингибируют ионные каналы) ПНЖК омега-3. В последнее время проведены исследования, показывающие иммунозащитное действие омега-3 жирных кислот. В последних научных открытиях было обнаружено, что омега-3 жирные кислоты могут блокировать рост опухолей. ПНЖК омега-3 были известны как необходимые факторы для нормального роста с 1930-х годов.

Классификация, основные функции ПНЖК

Таблица 1: Классификация ПНЖК

Мононенасыщенные	Полиненасыщенные		
Омега 9	Омега 3	Омега 6	
	альфа-линоленовая кислота и ее производные	гамма-линоленовая кислота	
	эйкозапентаеновая кислота (EPA)	линолевая кислота	
	декозагексаеновая кислота (DHA)	арахидоновая кислота	

Существуют 4 класса полиненасыщенных жирных кислот (ПНЖК): Омега-3, Омега-6, Омега-7 и Омега-9 (такое деление на классы основано на положении первой двойной связи по отношению к углероду концевой метильной группы). Основными функциями ПНЖК является их участие в формировании фосфолипидов клеточных мембран и синтез эйкозаноидов (биологически активных веществ – тканевых гормонов): простациклинов (ПЦ), простагландинов (ПГ), лейкотриенов (ЛТ) и тромбоксанов (ТК). Эти вещества играют активную роль в регуляции функций всего организма, особенно сердечно-сосудистой системы. Для понимания механизма действия ПНЖК представляют 2 класса полиненасыщенных жирных практический интерес кислот: Омега-3 ПНЖК и Омега-6 ПНЖК. Ключевым представителем жирных кислот класса Омега-6 является арахидоновая кислота (АК). АК входит в состав фосфолипидов клеточных мембран тромбоцитов и эндотелиальных клеток. АК поступает в организм частично с пищей (растительными маслами) и частично синтезируется организмом, что обеспечивает ее постоянное присутствие в организме человека. Омега-3 ПНЖК - эйкозапентаеновая кислота (ЭПК) и докозагексаеновая кислота (ДГК) играют важную роль в обеспечении жизнедеятельности человеческого организма.

Омега-3 ПНЖК:

- формируют адекватную ответную реакцию клеток организма на действие внешних патогенных факторов
 - регулируют липидный обмен,
- предупреждают развитие воспаления, образование тромбов, нарушения сердечного ритма.

Свободные ЭПК и ДГК являются важными структурными компонентами модифицируют _ ингибируют клеточных мембран; они трансмембранных ионных каналов всех органов и тканей (головного мозга, ЭПК зрительного анализатора др.). усиливает эффективность организма, систем нормализует антиоксидантных процессы липидов в кровяном русле, репарацию клеточных мембран, иммунокомпетентных клеток, способствует улучшению всасывания жиров в желудочно-кишечном тракте. ЭПК способствует нормализации состояния при гиперлипопротеинемиях, гипертонической болезни, склонности к тром- бозам, бронхиальной диабете, астме, кожных заболеваниях иммунодефицитных состояниях. ДГК в первую очередь накапливается в мембранных структурах головного мозга и репродуктивной системы. Омега-3 и Омега-6 ПНЖК обеспечивают синтез тканевых гормонов, так называемые, эйкозаноидов (простагландины, простациклины, тромбоксаны, лейкотриены), регулирующих местные клеточные тканевые функции, включая И функционирование тромбоцитов, лейкоцитов и воспалительные реакции, эритроцитов, сужение и расширение сосудов и т.д. В норме при достаточном поступлении в организм человека Омега-3 ПНЖК вытесняют АК и вступают в фосфолипидах конкурентное замещение АК клеточных мембран вциклооксигеназном и липооксигеназном путях метаболизма. Это играет важную роль в понимании механизмов действия, так как функциональные

свойства эйкозаноидов, синтезируемых из Омега-6 (АК) и из Омега-3 ПНЖК – противоположны. Так, образующийся из Омега-3 ПНЖК простациклин 3 (ПЦЗ) оказывает вазодилатирующий эффект и снижает артериальное давление. Простациклин 2 (ПЦ 2), синтезируемый из Омега-6, напротив, вызывает вазоконстрикцию. Различные функциональные свойства были выявлены и в отношении тромбоксанов. Показано, что из Омега-3 ПНЖК синтезируется тромбоксан 3 (ТК3), который оказывает выраженный антиагрегационный эффект. Синтезируемый из Омега-6 тромбоксан 2 (ТК2), наоборот, активирует Подобные различия выявлены и в синтезе агрегацию тромбоцитов. лейкотриенов (ЛТ). Лейкотриен 5 серии (ЛТ5), синтезируемые из Омега-3 ПНЖК, оказывает выраженный противовоспалительный эффект, в то время как лейкотриен 4 серии (ЛТ4), синтезируемый из Омега-6 ПЖК, не влияет на процессы воспаления, а в некоторых случаях даже потенцирует развитие воспалительных реакций. Таким образом, эйкозаноиды, синтезируемые из Омега-3 ПНЖК обладают противовоспалительным и антитромботическим действием, способностью регулировать тонус сосудов (в противоположность метаболитам из Омега-6 ПНЖК).

Благодаря вышеописанным механизмам действия, Омега-3 ПНЖК обладают широким спектром эффектов: – нормализуют липидный обмен;

- предупреждают развитие метаболических и сердечно-сосудистых нарушений;
- улучшают реологические свойства крови и микроциркуляцию регулируют тонус сосудов;
- обеспечивают выработку противовоспалительных простагландинов (предупреждают повреждение эндотелия и развитие эндотелиальной дисфункции).

Источники ПНЖК в питании

ПНЖК Природными источниками растительные являются масла завязи семени пшеницы, льна, рыжиковое масло, горчичное масло, масло подсолнечника, соевых бобов, арахиса, а также грецкий орех, миндаль, семечки подсолнуха, рыбий жир и рыба жирных и полужирных видов (лосось, макрель, сельдь, сардины, скумбрия, форель, тунец и другие), печень трески и моллюски.

Основным пищевым источником ПНЖК ряда омега-6 являются растительные масла. Омега-6 жирные кислоты синтезируют большинство растений, которые растут на суше. Главным пищевым источником ПНЖК ряда омега-3 являются жирные сорта холодноводных рыб и рыбий жир, а также такие растительные масла, как льняное, перилловое, соевое и рапсовое.

Промышленная переработка жиров и масел в значительной мере снизила содержание незаменимых жирных кислот в нашем питании. В пищевом

рационе на долю незаменимых жирных кислот должно приходится (по калорийности) не менее 1-2 % от общей потребности организма в калориях. Оптимальное соотношение в пище ω -3: ω -6 жирных кислот составляет 1:4. Минздрав России рекомендует 1 г АЛК/ ЭПК/ ДГК в сутки для адекватного потребления. Минимальная суточная потребность человека в линолевой кислоте составляет 2-6 г, но эта потребность увеличивается пропорционально доле поступающих в организм насыщенных жиров. Одним из способов получения адекватного количества ЭПК и ДГК является употребление жирной морской рыбы. Например, типичная порция рыбы (85 г) может содержать от 0,2 до 1,8 гЭПК/ ДГК. Американские эксперты рекомендуют употреблять две порции рыбы в неделю. При определённых патологиях важным является повышенный приём ω -3 жирных кислот, которые могут быть в виде биологически активных добавок или лекарственных препаратов.

Для получения максимальной пользы от ПНЖК, следует соблюдать правила хранения (защита от кислорода воздуха и других окислителей, от прямых солнечных лучей) и употреблять их в необходимых количествах. Потребление избыточных количеств ПНЖК может привести к нарушению прооксидантно-антиоксидантного гомеостаза организма. Bce подвержены процессу переокисления, и при недостатке естественных антиоксидантов это ведёт к образованию свободных радикалов со сдвигами в сторону повышения атерогенности и канцерогенеза. Необходимым условием препаратах, содержащих ПНЖК. является наличие В антиоксидантов в физиологических дозах. Например, таким антиоксидантом служит витамин Е, который имеется в рыбе и морепродуктах.

Нормы потребления.

Физиологическая потребность в ПНЖК – для взрослых 6-10 % от калорийности суточного рациона. Физиологическая потребность в ПНЖК – для детей 5-10% от калорийности суточного рациона. Двумя основными группами ПНЖК являются кислоты семейств ω-6 и ω-3. Жирные кислоты ω-6 содержатся практически во всех растительных маслах и орехах. ω -3 жирные кислоты также содержатся в ряде масел (льняном, из семян крестоцветных, соевом). Основным пищевым источником ω -3 жирных кислот являются жирные сорта рыб и некоторые морепродукты. Из ПНЖК ω - 6 особое место занимает линолевая которая является предшественником наиболее физиологически активной кислоты этого семейства - арахидоновой. Арахидоновая кислота является преобладающим представителем ПНЖК в организме человека. Физиологическая потребность для взрослых составляют 8-10 г/сутки ω-6 жирных кислот, и 0.8-1.6 г/сутки ω -3 жирных кислот, или 5-8% от калорийности суточного рациона, для ω-6 и 1-2% от калорийности суточного рациона. для ω-3. Оптимальное соотношение в суточном рационе ω-6 к ω-3 жирных кислот должно составлять 5-10:1. Физиологическая потребность в ω-6 и ω -3 жирных кислотах – 4-9% и 0,8-1% от калорийности суточного рациона для детей от 1 года до 14 лет и 5 - 8% и 1-2% для детей от 14 до 18 лет, соответственно.

Таблица 2. Основные пищевые источники линоленовой кислоты

Продукт	Порция, г	Содержание линоленовой кислоты, г	
Льняное масло	15 (1 столовая ложка)	8,5	
Грецкий орех	30	2,6	
Рапсовое масло	15 (1 столовая ложка)	1,2	
Соевое масло	15 (1 столовая ложка)	0,9	
Горчичное масло	15 (1 столовая ложка)	0,8	
Оливковое масло	15 (1 столовая ложка)	0,1	
Брокколи	16. и эмем 180 го и и и и	0,1	

Таблица 3. Основные пищевые источники ПНЖК семейства омега-3

Продукт	Порция, г	ЭПК, г	ДГК, г	Порция, обеспечивающая поступление 1 г ЭПК + ДГК, г
Сельдь	90	1,06	0,75	45
Лосось	90	0,86	0,62	60
Устрицы	90	0,75	0,43	75
Форель	90	0,40	0,44	105
Крабы	90	0,24	0,10	270
Креветки	90	0,15	0,12	330
Треска	90	0,09	0,15	375
Рыбий жир (лососевый)	1	0,13	0,09	5

Таблица 4. Содержание ПНЖК в растительных и животных жирах

	Ненасыщенные жиры			
Насыщенные жиры	Мононенасыщенные Полинена		сыщенные	
	Омега-9	Омега-3	Омега-6	
Сливочное масло и молочные жиры	Оливковое масло	Жирные сорта рыб и рыбий жир	Подсолнечное (постное) масло	
Мясо, сало и другие животные жиры	Арахисовое масло	Льняное масло	Кукурузное масло	
Пальмовое масло	овое масло Авокадо		Другие виды орехов и семечки	
Кокосовое масло	Маслины	Масло волошского (грецкого) ореха	Хлопковое масло	
Масло из какао-бобов	Мясо птицы	Масло из зародышей пшеницы	Соевое масло	

Таблица 5.Содержание ПНЖК в растительных продуктах (семенах и орехах)

Продукт	Кол- во	Омега-3 мг	Омега-6 мг	Омега3/ Омега6		
Семечки						
Семена льна	30 г	7 014	1818	3,9:1		
Семена чиа	30 r	5 265	1736	3:1		
Семечки подсолнуха	30 г	22	6914	1:311		
Семечки кунжута	30 г	113	6 412	1:57		
Семечки тыквенные	30 r	54	6210	1:114		
Орехи						
Кешью	30 r	19	2 335	1:126		
Фундук	30 r	26	2 350	1:90		
Кедровый	30 г	34	10 082	1:300		
Фисташки	30 r	76	3 960	1:52		
Миндаль	30 г	2	3 620	1:2011		
Грецкий	30 r	2724	11 428	1:4,2		

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА:

Основная литература:

- 1) Ребров В.Г., Громова О.А. Основы рационального питания. М., 2008.
- 2) Тутельян В.А., Витамины и микроэлементы в клинической фармакологии. М., 2001.
- 3) нормативные документы: методические рекомендации « Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения РФ», МР 2.3.1.2432-08

Дополнительная литература:

- 1) Пилат Т.Л., Иванов А.А. Биологически активные добавки к пище (теория, производство, применение). М., 2002.
- 2) Базы данных, информационно-справочные и поисковые системы: «Консультант плюс» http://www.consultant.ru; . «Гарант» http://www.garant.